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Abstrak 

This study aims to analyze a suitable forecasting model using ARIMA to help PT. KAI 

Indonesia in predicting the number of train passengers in Jabodetabek. This study uses the 

method of identifying forecasting patterns. Model selection is very important in forecasting 

because forecasting models are beneficial for forecasting using past data in the past. The 

sample used is the number of Jabodetabek train passengers from January 2014 to December 

2016. The results show that the suitable forecasting method to predict the number of 

Jabodetabek train passengers is the ARIMA method (3,1,6). The results from this analysis 

can be used for considering to calculate operational costs and business development in the 

future. 
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INTRODUCTION 

Jabodetabek is a metropolitan area consisting of Jakarta, Bogor, Depok, Tangerang, Bekasi. 

The people in Jabodetabek, in carrying out their daily activities, sometimes need to go from 

one place to another. Various public transportation facilities, including trains and buses, are 

available to facilitate this. The train is a practical transportation choice because it will not be 

affected by traffic jams in Jabodetabek, and the price is economical. This has encouraged many 

Jabodetabek people to choose trains as the most desirable transportation.  

 

The number of train passengers in Jabodetabek is a reference that can be used to conduct 

research using the Box-Jenkins Time Series forecasting method, especially the Auto-

Regressive Integrated Moving Average (ARIMA) model. Many previous studies used 

ARIMA model to forecast the number of train passenger. In (Ria & Indrasetianingsih, 2016), 

forecasting the number of train passenger using ARIMA method. The results show that the 

best time series model analysis for forecasting the number of Java train passenger is ARIMA 

model (1,1,0) (0,1,1)12, because it has smallest RMSE value dan the MAPE value under 10% 

which is 9.8% compared with the other model. Also, in (Hidayat, 2019), analyzing forecast 

the number of Penataran train passenger using ARIMA and Exponential Smoothing. The 

results show that forecasting with ARIMA can produce the highest forecasting value if 

compared with Exponential Smoothing-Winter Method, and the number of passengers in 

previous years. Arima Box Jenkins Method is more suitable to to determining the number of 

passengers in the future, because the accuracy value is smaller compared with Exponential 

Smoothing-Winter Method. 

 

Forecasting is an important tool in effective and efficient planning. Perspectives on forecasting 

may be as diverse as those of any other group of scientific methods. An institution always sets 
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goals and objectives, tries to estimate environmental factors, then determines the actions that 

are expected to achieve these goals and objectives. This study discusses the forecasting model 

for the number of Jabodetabek train passengers in 2017 using sample data on the number of 

Jabodetabek train passengers from January 2014 to December 2016. 

 

This forecasting aims to take strategic steps that need to be done. The choice of the forecasting 

model is also very important because each type of data has a different model. Based on these 

conditions, the problem in this study is which forecasting model is most suitable for 

forecasting data on the number of Jabodetabek train passengers. 

 

METHOD 

A. Introduction of Time Series Models 

The time series method is a forecasting method that analyzes the relationship pattern 

between the variables to be estimated and the time variable. Forecasting a time series data 

needs to pay attention to the type or pattern of data. There are four types of time series data 

patterns, namely horizontal, trend, seasonal, and cyclical (Hanke & Wichers, 2005). 

Horizontal patterns are unexpected and random events, but their occurrence can affect 

fluctuations in time series data. The trend pattern is the tendency of the direction of the data 

in the long term, and it can be in the form of an increase or decrease. Seasonal patterns are 

fluctuations in data that occur periodically within one year, such as quarterly, quarterly, 

monthly, weekly, or daily. While the cyclical pattern is a fluctuation of the data for more 

than one year (Lisnawati, 2012). The method that is often used is the Box-Jenkins ARIMA 

method which is used to process univariate time series, and the transfer function analysis 

method is used to process time-series data. Multivariate. To be processed using the Box-

Jenkins ARIMA method, a time series data must meet the stationarity requirements 

(Makridakis, 1999). 

B. Stochastic Process 

The presentation of this section refers to (Cryer & Chan, 2008). In mathematics, especially 

in probability theory and statistics, a stochastic process is a collection of random variables 

𝑋𝑡 where 𝑡 is a parameter of a set of indices (usually corresponding to a discrete-time unit 

with the set of indexes {1, 2, … }). The stochastic process is one way to quantify the 

relationship between a set of random events. Therefore, stochastic processes are often used 

to model a system that changes randomly over time, such as in finance, biology, and others. 

A stochastic process is generally denoted as {𝑋𝑡}𝑡∈𝑇 or {𝑋𝑡}. There are several ways to 

classify a stochastic process, for example, by using the cardinality of its index set and the 

conditioned space. When the set of indices is interpreted as time and has a finite or calculated 

cardinality (for example, the set of natural numbers), we call it a discrete-time stochastic 

process. If the set of indices is an interval of real numbers, we call it a continuous-time 

stochastic process. There are two examples of stochastic processes: 
 

• Bernoulli Process 

The Bernoulli process is one of the simplest stochastic processes. This process is a 

collection of identically distributed independent random variables (iid) with a value 

of 0 or 1 with probabilities 𝑝 and 1 − 𝑝, respectively. This process can be associated 

with repeatedly tossing a coin (which may be unfair). 
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• Markov Process 

A Markov process is a stochastic process that satisfies the Markov condition. Given 

the situation at the current time, the probability of an event in the future is not 

affected by additional information regarding past behaviour. Formally, 

 

Pr{𝑋𝑛+1 = 𝑗|𝑋0 = 𝑖0, … . , 𝑋𝑛−1 = 𝑖𝑛−1, 𝑋𝑛 = 𝑖} = Pr {𝑋𝑛+1 = 𝑗|𝑋1} 

 

C. Stationary 

The presentation of this section refers to (Cryer & Chan, 2008). To make statistical 

conclusions about the structure of a stochastic process based on the observed records, we 

usually have to make some simplifying (and possibly reasonable) assumptions about that 

structure. The most important assumption is the assumption of stationarity. The basic idea 

of stationarity is that the laws of probability that govern the behaviors of processes do not 

change over time. In a sense, the process is in statistical equilibrium. Specifically, a process 

{𝑌𝑡} is said to be completely stationary if the joint distribution 𝑌𝑡1
, 𝑌𝑡2

, . . . , 𝑌𝑡𝑛
 equals the 

shared distribution 𝑌𝑡1−𝑘, 𝑌𝑡2−𝑘, . . . , 𝑌𝑡𝑛−𝑘 for all time point options 𝑡1 ,  𝑡2, . . . , 𝑡𝑛 and all 𝑘 

time lag options. 

 

Thus, when 𝑛 =  1, the (univariate) distribution of 𝑌𝑡 equals the distribution of 𝑌𝑡−𝑘 for all 

𝑡 and 𝑘; in other words, Y (slightly) is identically distributed. It then follows that 𝐸(𝑌𝑡)  =
 𝐸(𝑌𝑡−𝑘) for all 𝑡 and 𝑘 so that the average function is constant for all time. Moreover, 

𝑉𝑎𝑟 (𝑌𝑡)  =  𝑉𝑎𝑟 (𝑌𝑡−𝑘)  for all 𝑡 and 𝑘 so that the variance is also constant over time. 

 

Setting 𝑛 =  2 in the definition of stationarity we see that the bivariate distribution of 𝑌𝑡 and 

𝑌𝑠 must equal 𝑌𝑡−𝑘 and 𝑌𝑠−𝑘 so that 𝐶𝑜𝑣(𝑌𝑡, 𝑌𝑠) = 𝐶𝑜𝑣(𝑌𝑡−𝑘, 𝑌𝑠−𝑘)  for all 𝑡, 𝑠, and 𝑘. 

Putting 𝑘 =  𝑠 and then 𝑘 =  𝑡, we get 

𝛾𝑡,𝑠 = 𝐶𝑜𝑣(𝑌𝑡−𝑠, 𝑌0) 

       = 𝐶𝑜𝑣(𝑌0, 𝑌𝑠−𝑡) 

        = 𝐶𝑜𝑣(𝑌0, 𝑌|𝑡−𝑠|) 

= 𝛾0,|𝑡−𝑠| 

The covariance between Yt and Ys is time-dependent only through the time difference |t−s| 

and not vice versa at the actual time t and s. So, for a stationary process, we can simplify 

the notation and write it 

 

𝛾𝑘 = 𝐶𝑜𝑣(𝑌𝑡, 𝑌𝑡−𝑘)         and        𝜌𝑘 = 𝐶𝑜𝑟𝑟(𝑌𝑡, 𝑌𝑡−𝑘)                             

also note that 

𝜌𝑘 =
𝛾𝑘

𝛾0
  

If a process is completely stationary and has a finite variance, the covariance function must 

depend only on the time lag.  

 

[2] 

[1] 

[4] 

[3] 
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D. Auto Correlation Function (ACF) and Partial Autocorrelation Function (PACF) 

The presentation of this section refers to (Cryer & Chan, 2008). In the time series method, 

the primary way to identify a model from a data to forecast is to use the Autocorrelation 

Function (ACF) and Partial Autocorrelation Function (PACF). According to (Wei, 2006), 

from the stationary process of time series data (𝑋𝑡) obtained 𝐸 𝑋𝑡 = 𝜇 and the variance of 

𝑉𝑎𝑟 𝑋𝑡 = 𝐸(𝑋𝑡 − 𝜇)2 = 𝜎2 which is constant, and the covariance 𝐶𝑜𝑣(𝑋𝑡,𝑋𝑡+𝑘), whose 

function is only on the time difference |𝑡 − (𝑡 − 𝑘)|.  
 

Then, the result can be written as an intermediate covariance X_t and X_(t+k) as 

follows: 

𝛾𝑘 = 𝐶𝑜𝑣 𝑋𝑡, 𝑋𝑡+𝑘 = 𝐸 𝑋𝑡 − 𝜇 𝑋𝑡+𝑘 − 𝜇 

And the correlation between 𝑋𝑡, 𝑋𝑡+𝑘: 

  

𝜌𝑘 =
𝐶𝑜𝑣(𝑋𝑡,𝑋𝑡+𝑘)

𝑉𝑎𝑟(𝑋𝑡) 𝑉𝑎𝑟(𝑋𝑡+𝑘)
=

𝛾𝑘

𝛾0
  

Where the notation 𝑉𝑎𝑟 𝑋𝑡 = 𝑉𝑎𝑟𝑋𝑡+𝑘 = 𝛾0. As a function of 𝑘 𝛾𝑘, where the 

autocovariance and 𝜌𝑘 functions are called autocorrelation functions (ACF), in the time 

series analysis 𝛾𝑘 and 𝜌𝑘 describe the covariance and correlation between 𝑋𝑡 and 𝑋𝑡+𝑘 

from the same process, only separated from lag-k . 

 

The sample of the autocovariance function and the sample of the autocorrelation function 

can be written as: 

 

𝛾𝑘 =
1

𝑇
 
𝑇 − 𝑘
𝑡 = 1

 𝑋𝑡 − 𝑋 𝑋𝑡+𝑘 − 𝑋  

 

and 

𝜌𝑘 =
𝛾𝑘

𝛾0
=

𝑇−𝑘
𝑡=1

 𝑋𝑡−𝑋  𝑋𝑡+𝑘−𝑋

𝑋𝑡−𝑋2 , 𝑘 = 0,1,2, ….  

 

with 

𝑋 =
1

𝑇
 

𝑇
𝑡 = 1

  𝑋𝑡  

 

The autocovariance function 𝛾𝑘 and the autocorrelation function 𝜌𝑘 have the following 

characteristics: 

 𝛾0 = 𝑉𝑎𝑟 𝑋𝑡;  𝜌0 = 1 
 

1) |𝛾𝑘 ≤ 𝛾0; |𝜌𝑘 ≤ 1 

2) 𝛾𝑘 = 𝛾−𝑘 and  𝜌𝑘 = 𝜌−𝑘 for all 𝑘, 𝛾𝑘 and 𝜌𝑘 in the function 𝑙𝑎𝑔 𝑘 =  0 are 

the same and symmetrical. This property is obtained from the time difference 

between 𝑋𝑡 and 𝑋𝑡+𝑘. Therefore, the autocorrelation function is often only 

plotted for non-negative lags. Such plots are sometimes called correlograms. 

[5] 

[6] 

[7] 

[8] 

[9] 

[10] 
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E. Model of Time-Series 

The presentation of this section refers to (Cryer & Chan, 2008). 

• Model Autoregressive or AR(p) 

AR(p) is the most basic linear model for stationary processes. This model can be 

interpreted as a process of regression results itself. Mathematically it is given by 

 

𝑋𝑡 = 𝜙0 + 𝜙1𝑋𝑡−1 + 𝜙2𝑋𝑡−2 + ⋯ + 𝜙𝑝𝑋𝑡−𝑝 + 𝑎𝑡  

where 𝑋𝑡 is data at time t; t = 1, 2, 3, …, n. 𝑋𝑡−𝑖 is data at time t-i, i = 1, 2, 3, …, 

p, 𝑎𝑡 is  error on time t, 𝜙0 is a constant, 𝜙𝑖 is AR coefficient; i = 1, 2, 3, …, p 

• Model Moving Average or MA(q) 

The general form of a q-level or MA(q) moving average model is defined as: 

𝑋𝑡 = 𝜃0 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 − 𝜃2𝑎𝑡−2 − ⋯ − 𝜃𝑞𝑎𝑡−𝑞  

where 𝑋𝑡 is data at time t with t = 1, 2, 3, …, n,  𝑎𝑡−𝑖 is error at time t-i with i 

= 1, 2, 3, …, q, 𝜃0 is a constant, 𝜃𝑖 is MA coefficient with i = 1, 2, 3, …, q. 

• Model Autoregressive Moving Average or ARMA(p,q) 

This model is a combination of AR(p) and MA(q).  It can be expressed as ARMA(p,q) 

with the general form: 

 

𝑋𝑡 = 𝜙0 + 𝜙1𝑋𝑡−1 + ⋯ + 𝜙𝑝𝑋𝑡−𝑝 + 𝑎𝑡−𝜃1𝑎𝑡−1 − ⋯ − 𝜃𝑞𝑎𝑡−𝑞  

where  𝑋𝑡 is data at time t with t = 1, 2, 3, …, n, 𝑋𝑡−𝑖is data at time t-i with i = 

1, 2, 3, …, p, 𝑎𝑡−𝑖  is error on period t-i with i = 1, 2, 3, …, q, 𝜃0 is a constant, 𝜙𝑖is 

AR coefficient with i = 1, 2, 3, …, p, 𝜃𝑖 is MA coefficient with i = 1, 2, 3, …, q. 
 

• Model Autoregressive Integrated Moving Average or ARIMA(p,d,q) 

The ARMA(p,q) involving the differencing process with degree d will give us 

ARIMA(p,d,q). The general formula is written as follows: 

𝑍𝑡 = 𝜙1𝑍𝑡−1 + 𝜙2𝑍𝑡−2 + ⋯ + 𝜙𝑝𝑍𝑡−𝑝 + ⋯ + 𝑑𝑍𝑡−𝑝−𝑑𝜀𝑡  

The summary of all process to find the best ARIMA model is given by Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. Box-Jenkins Method 

[11] 

[12] 

[13] 

[14] 
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RESULT AND DISCUSSION 

 

A. Data Preparation 

In this study, we use the secondary data of the number of  of Jabodetabek train passengers 

of PT Kereta Api Indonesia from January 2014 until December 2016. This data is obtained 

from website of Badan Pusat Statistik Republik Indonesia (Badan Pusat Statistik, 2022) and 

presented at Table 1 below. All processing this data is helped by statistical software R. 

 

Table 1. Number of Jabodetabek Train Passengers January 2014 – December 2016 
 

Date Passenger  Date Passenger  Date Passenger 

01 January 2014 15176.00  01 April 2015 21171.00  01 August 2016 23923.00 

01 February 2014 14856.00  
01 May 2015 22177.00 

 01 September 

2016 
23570.00 

01 March 2014 17471.00  01 June 2015 22207.00  01 October 2016 24533.00 

01 April 2014 16671.00  
01 July 2015 21171.00 

 01 November 

2016 
24104.00 

01 May 2014 16781.00  
01 August 2015 22295.00 

 01 December 

2016 
24841.00 

01 June 2014 17848.00  01 September 2015 22021.00  

01 July 2014 16585.00  01 October 2015 22964.00  

01 August 2014 17091.00  01 November 2015 22355.00  

01 September 2014 18253.00  01 December 2015 22996.00  

01 October 2014 19079.00  01 January 2016 22238.00  

01 November 2014 18605.00  01 February 2016 21229.00  

01 December 2014 20080.00  01 March 2016 23206.00  

01 January 2015 19244.00  01 April 2016 23149.00  

01 February 2015 17640.00  01 May 2016 24401.00  

01 March 2015 21290.00  01 June 2016 23821.00  

 

B. Stationary Check 

The plot of the data is presented by Figure 8. From the figure, we found that there is 

fluctuation and increasing over time. Figure 9 show the plot data after first differencing 

process.  The next step, we need to stationarity checking by using the ADF test. The 

condition for stationarity of data is that the p-value is less than 0.05. The result of checking 

stationarity using R studio give us the p-value of ADF test is 0.5009, which means that this 

data is not stationary. The next step is differencing the data. After this process, we obtain p-

value =  0.01. Since this value is less than 0.05, we conclude that the data is already 

stationary. From this, we also get that the degree of differencing is d=1.  
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Figure 8. Plot Before Differencing                          Figure 9. Plot After First Differencing 

 

 
         Figure 10. ACF Before Differencing         Figure 11. ACF After First Differencing 

 

This is the P Plot (ACF). According to Figure 11, we can see that the numbers traversed 

by the blue dotted line are number 1 and number 12 or we can say it’s P. 

           
           Figure 12. Before Differencing                       Figure 13.  After First Differencing 

 

This is the Q Plot (PACF). On figure 13, we can see that the numbers traversed by the blue 

dotted line are 1, 4, and 7, and for this we can say it’s Q. 
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C. Model Spesification 

In this analysis, we choose (p, d, q) = (4, 1, 12). Table 2 below present some random 

numbers so that 35 different models are formed. 

 
 

Table 2. ARIMA model data specifications 
 

Model 

ARIMA 
P D Q 

 ARIMA 

(3,1,7) 
3 1 7  

ARIMA 

(1,1,8) 
1 1 8 

ARIMA 

(4,1,12) 
4 1 12 

 ARIMA 

(3,1,6) 
3 1 6  

ARIMA 

(1,1,7) 
1 1 7 

ARIMA 

(4,1,11) 
4 1 11 

 ARIMA 

(2,1,12) 
2 1 12  

ARIMA 

(1,1,6) 
1 1 6 

ARIMA 

(4,1,10) 
4 1 10 

 ARIMA 

(2,1,11) 
2 1 11  

ARIMA 

(0,1,12) 
0 1 12 

ARIMA 

(4,1,9) 
4 1 9 

 ARIMA 

(2,1,10) 
2 1 10  

ARIMA 

(0,1,11) 
0 1 11 

ARIMA 

(4,1,8) 
4 1 8 

 ARIMA 

(2,1,9) 
2 1 9  

ARIMA 

(0,1,10) 
0 1 10 

ARIMA 

(4,1,7) 
4 1 7 

 ARIMA 

(2,1,8) 
2 1 8  

ARIMA 

(0,1,9) 
0 1 9 

ARIMA 

(4,1,6) 
4 1 6 

 ARIMA 

(2,1,7) 
2 1 7  

ARIMA 

(0,1,8) 
0 1 8 

ARIMA 

(3,1,12) 
3 1 12 

 ARIMA 

(2,1,6) 
2 1 6  

ARIMA 

(0,1,7) 
0 1 7 

ARIMA 

(3,1,11) 
3 1 11 

 ARIMA 

(1,1,12) 
1 1 12  

ARIMA 

(0,1,6) 
0 1 6 

ARIMA 

(3,1,10) 
3 1 10 

 ARIMA 

(1,1,11) 
1 1 11  

ARIMA 

(3,1,9) 
3 1 9 

 ARIMA 

(1,1,10) 
1 1 10  

ARIMA 

(3,1,8) 
3 1 8 

 ARIMA 

(1,1,9) 
1 1 9  

 

D. Parameter Estimation 

The following are parameter estimates for all ARIMA models. After knowing the results of 

the ARIMA model, we can determine the estimated coefficients consisting of AR1, AR2, 

MA1, Mean Square Error (MSE), Log-likelihood, AIC, and MAPE, which will be 

considered for forecasting later. AR1, AR2, MA1, Log-Likelihood, and AIC were 

calculated using Rstudio. Meanwhile, MSE and MAPE were calculated using excel. 
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Table 3. ARIMA Parameter Estimation 
 

MODEL 

ARIMA 

COEFFICIENT OF ESTIMATION RESULT 

AR1 AR2 MA1 MSE 
LOG 

LIKEHOOD 
AIC MAPE 

ARIMA 

(4,1,12) 
-0.5335 -0.2907 -0.0259 4657594.167 -281.59 595,17 91.13% 

ARIMA 

(4,1,11) 
-0.2275 0.0672 -0.1969 3651702.783 -285.37 600,74 79.69% 

ARIMA 

(4,1,10) 
0.1480 -0.2051 -0.6455 2700658.822 -286.56 601,13 67.77% 

ARIMA 

(4,1,9) 
0.0788 -0.2113 -0.5772 2589202.631 -286.58 599,17 66.61% 

ARIMA 

(4,1,8) 
0.4084 0.6345 -0.9301 2050198.4 -288.1 600,2 60.98% 

ARIMA 

(4,1,7) 
-0.2973 0.6417 -0.2703 1731700.909 -288.23 598,46 56.61% 

ARIMA 

(4,1,6) 
0.6749 -0.0493 -1.2517 1726787.605 -288.24 596,47 56.29% 

ARIMA 

(3,1,12) 
-0.2229 0.0024 -0.2565 3028617,129 -283.88 597,76 75.18% 

ARIMA 

(3,1,11) 
0.0773 0.0671 -0.5129 4500508,813 -285.38 598,77 88.00% 

ARIMA 

(3,1,10) 
0.0316 0.2321 -0.4659 1778827,176 -285.74 597,48 57.64% 

ARIMA 

(3,1,9) 
0.0125 0.2481 0.7324 1869933,946 -285.76 595,53 59.38% 

ARIMA 

(3,1,8) 
0.3618 0.6101 -0.8812 2164273,908 -288.11 598,23 63.08% 

ARIMA 

(3,1,7) 
-0.0991 -0.4209 -0.3493 4360389,729 -289.83 599,67 88,75% 

ARIMA 

(3,1,6) 
0.6939 -0.0468 -1.2646 1739139,115 -288.25 594,49 56.61% 

ARIMA 

(2,1,12) 
-0.2189 0.0085 -0.2633 3084159,354 -283.88 595,77 75.91% 

ARIMA 

(2,1,11) 
-1.7098 -0.9747 1.6430 2757235,702 -284.12 594,23 72.75% 
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ARIMA 

(2,1,10) 
-0.8425 -0.1827 0.3337 1821906,591 -287.27 598,54 57.24% 

ARIMA 

(2,1,9) 
0.0427 -0.0554 -0.6008 2020651,973 -288.41 598,81 59.18% 

ARIMA 

(2,1,8) 
0.5262 0.4722 -1.1087 1809428,287 -288.12 596,25 58.00% 

ARIMA 

(2,1,7) 
-0.6973 -0.1441 0.2499 4623771,887 -290 598 93.02% 

ARIMA 

(2,1,6) 
-0.4125 -0.2849 -0.0443 4630850,201 -289.99 595,98 92.15% 

ARIMA 

(1,1,12) 
-0.2206 - -0.2645 3069722,254 -283.88 593,77 75.69% 

ARIMA 

(1,1,11) 
-0.6546 - 0.1683 1823115,846 -287.36 598,73 56.93% 

ARIMA 

(1,1,10) 
-0.7490 - 0.3142 1770402,224 -287.53 597,06 54.96% 

ARIMA 

(1,1,9) 
0.0434 - -0.6008 1951288,328 -288.44 596,87 57.93% 

ARIMA 

(1,1,8) 
-0.9809 - 0.579 4714624,634 -290.28 598,56 93.69% 

ARIMA 

(1,1,7) 
-0.5662 - 0.1274 4659555,009 -290.04 596,08 93.52% 

ARIMA 

(1,1,6) 
-0.7738 - 0.4096 3942582,704 -290.55 595,1 85.21% 

ARIMA 

(0,1,12) 
- - -0.4726 2819883,809 -284.21 592,43 72.36% 

ARIMA 

(0,1,11) 
- - -0.5763 2937816,019 -288.61 599,21 69.64% 

ARIMA 

(0,1,10) 
- - -0.5536 1950539,218 -288.43 596,87 57.91% 

ARIMA 

(0,1,9) 
- - -0.5813 1974631,82 -288.45 594,91 58.43% 

ARIMA 

(0,1,8) 
- - -0.4554 3967501,543 -289.85 595,69 85.53% 

ARIMA 

(0,1,7) 
- - -0.4233 4764266,701 -290.32 594,65 93.85% 

ARIMA 

(0,1,6) 
- - -0.4494 4518725,384 -290.66 593,31 90.48% 
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E. Residual Analysis 

In residual analysis, we can determine which model is best for our data using the Shapiro 

and Ljung's tests. The basic requirement needed to become the best model is to pass both 

tests, with the p-value criteria being more than 0.05. 
 

Table 4. ARIMA Analysis Residual 
 

Model 

ARIMA 

Shapiro Test Ljung-Box 
AIC MAPE 

p-value p-value 

ARIMA (4,1,12) 0,8845 0,6526 595,17 91.13% 

ARIMA (4,1,11) 0,3488 0,9468 600,74 79.69% 

ARIMA (4,1,10) 0,9479 0,5204 601,13 67.77% 

ARIMA (4,1,9) 0,9287 0,4906 599,17 66.61% 

ARIMA (4,1,8) 0,9901 0,9854 600,2 60.98% 

ARIMA (4,1,7) 0,8727 0,9445 598,46 56.61% 

ARIMA (4,1,6) 0,8026 0,9647 596,47 56.29% 

ARIMA (3,1,12) 0,7049 0,6345 597,76 75.18% 

ARIMA (3,1,11) 0,4745 0,9497 598,77 88.00% 

ARIMA (3,1,10) 0,5333 0,9467 597,48 57.64% 

ARIMA (3,1,9) 0,5548 0,9024 595,53 59.38% 

ARIMA (3,1,8) 0,995 0,995 598,23 63.08% 

ARIMA (3,1,7) 0,4829 0,5287 599,67 88,75% 

ARIMA (3,1,6) 0,8464 0,942 594,49 56.61% 

ARIMA (2,1,12) 0,705 0,6388 595,77 75.91% 

ARIMA (2,1,11) 0,9346 0,7208 594,23 72.75% 

ARIMA (2,1,10) 0,7813 0,7316 598,54 57.24% 

ARIMA (2,1,9) 0,6465 0,6599 598,81 59.18% 

ARIMA (2,1,8) 0,907 0,9861 596,25 58.00% 

ARIMA (2,1,7) 0,4895 0,5096 598 93.02% 

ARIMA (2,1,6) 0,5435 0,5055 595,98 92.15% 

ARIMA (1,1,12) 0,714 0,6404 593,77 75.69% 

ARIMA (1,1,11) 0,8174 0,5982 598,73 56.93% 

ARIMA (1,1,10) 0,8255 0,4033 597,06 54.96% 

ARIMA (1,1,9) 0,6154 0,6743 596,87 57.93% 

ARIMA (1,1,8) 0,6076 0,4316 598,56 93.69% 

ARIMA (1,1,7) 0,5096 0,4747 596,08 93.52% 

ARIMA (1,1,6) 0,745 0,312 595,1 85.21% 

ARIMA (0,1,12) 0,5605 0,3405 592,43 72.36% 

ARIMA (0,1,11) 0,4784 0,9591 599,21 69.64% 

ARIMA (0,1,10) 0,6293 0,6583 596,87 57.91% 

ARIMA (0,1,9) 0,5398 0,7855 594,91 58.43% 

ARIMA (0,1,8) 0,4865 0,571 595,69 85.53% 

ARIMA (0,1,7) 0,6366 0,413 594,65 93.85% 

ARIMA (0,1,6) 0,69 0,63 593,31 90.48% 
 

However, in this table, all data passed the Saphiro and Ljung-Box tests. In this case, we 

will then use the smallest MAPE value of the smallest AICs. The line that I marked in 
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blue, or what we can call the ARIMA 14 model (3, 1, 6), is the best model. The model has 

equation 
 

𝑊𝑡 = 0.69391𝑊𝑡−1−0.04682𝑊𝑡−2 + 0.35253𝑊𝑡−3 + 𝑒𝑡 + 1.26461𝑒𝑡−1 −

0.39432𝑒𝑡−2 + 0.21903𝑒𝑡−3 + 0.36334𝑒𝑡−4 − 1.17095𝑒𝑡−5 + 0.70626𝑒𝑡−6 

where  𝑊𝑡 = 𝑌𝑡 − 3𝑌𝑡−1 + 3𝑌𝑡−2 − 𝑌𝑡−3 

 

F. Error of The Forecasting  

In this part, we will calculate the error of the forecasting from the best model ARIMA 

(3,1,6). Here we define the error, squared error, percentage, MSE, RMSE, MAE, and 

MAPE. 

Table 5. Calculate Error Best Model 
 

 

After calculation we obtain of the MSE, RMSE, MAE, and MAPE  are 1739139,115, 

1318,764238, and 56,61%, respectively.  

 
 

G. Forecasting 

Then we enter into the forecasting stage. What will be predicted in this experiment is the 

number of Jabodetabek train passengers from January 2017 to December 2017 using 

ARIMA (3, 1, 6) and a confidence interval of 95%. 

 

 

 

 
 

Point Forecast Actual Data Error 
Error 

(Kuadrat) 
Percentage 

25326,72 24185 1303524,558 1141,72 4,72% 

24895,32 21743 9937121,382 3152,32 14,50% 

25902,03 25775 16136,6209 127,03 0,49% 

24998,14 25411 170453,3796 412,86 1,62% 

26130,75 27385 1573143,063 1254,25 4,58% 

26499,42 24432 4274225,456 2067,42 8,46% 

26383,6 27016 399929,76 632,4 2,34% 

26685,18 27679 987678,1924 993,82 3,59% 

27029,83 26158 760087,5489 871,83 3,33% 

27214,02 28765 2405538,96 1550,98 5,39% 

27431,99 28246 662612,2801 814,01 2,88% 

27696,1 29059 1857496,41 1362,9 4,69% 

[15] 
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Table 9. Forecasting Data Januari – Desember 2017 
 

Date Actual Data Point Forecast Lower Limit Upper Limit 

01 Januari 2017 24185 25326.72 23413.72 27239.73 

01 Februari 2017 21743 24895.32 22810.02 26980.62 

01 Maret 2017 25775 25902.03 23709.41 28094.65 

01 April 2017 25411 24998.14 22582.57 27413.71 

01 Mei 2017 27385 26130.75 23714.85 28546.65 

01 Juni 2017 24432 26499.42 23586.82 29412.03 

01 Juli 2017 27016 26383.60 23096.04 29671.16 

01 Agustus 2017 27679 26685.18 23224.97 30145.39 

01 September 2017 26158 27029.83 23334.68 30724.97 

01 Oktober 2017 28765 27214.02 23251.52 31176.52 

01 November 2017 28246 27431.99 23244.23 31619.75 

01 Desember 2017 29059 27696.10 23289.30 32102.89 

 

Figure 18 shows the results of forecasting the number of Jabodetabek train passengers in every 

month in 2017. The black line shows the sample data used to perform this analysis. The red 

line shows the graph of ARIMA used for forecasting, while the blue line shows the data 

prediction. 

 

 
Figure 18. Forecasting of the Passengers in 2017 
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Conclusion 

In the work, we have forecast the  the number of  of Jabodetabek train passengers of PT Kereta 

Api Indonesia from January 2017until December 2017.  The analysis result show that ARIMA 

(3,1,6) is the best model   The comparison between the predicted data and the actual data shows 

that the predicted data is not much different from the actual data. The total estimated number 

of passengers in 2017 is 316193 people. Meanwhile, according to actual data, the total number 

of passengers in 2017 was 315854. Therefore, forecasting using the ARIMA method can be 

pretty accurate and effective when correctly choosing the best ARIMA model. This analysis is 

expected to be helpful in knowing the number of passengers on trains in Jabodetabek. Based 

on these predictions, PT Kereta Api Indonesia is able to prepare and anticipate if there is a 

surge in passengers in the future. This will help the company to make a business plan to 

improve services to passengers. 

 

For further research, we will forecast Jabodatabek train passengers using the latest data and 

consider residual variance as well. In the case of variance of residual exist, the methods used 

in forecasting are ARCH and GARCH. 
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