Analisis dan Prediksi Kinerja Mahasiswa Menggunakan Teknik Data Mining

Authors

  • Sofi Defiyanti Fakultas Ilmu Komputer, Universitas Singaperbangsa Karawang

DOI:

https://doi.org/10.35706/syji.v2i01.192

Abstract

Abstrak - Prestasi belajar merupakan salah satu aspek yang paling penting dalam bidang pendidikan. Prestasi belajar yang tinggi selalu menjadi harapan semua pihak. Bagi pihak perguruan tinggi prestasi belajar mahasiswanya merupakan salah satu indikator efektif proses belajar mengajar, yang sekaligus dapat digunakan untuk meningkatkan citra perguruan tinggi tersebut. Di perguruan tinggi prestasi belajar yang dicapainya oleh mahasiswa menggunakan Indeks Prestasi Kumulatif (IPK). Beberapa teknik data mining diantaranya adalah decision tree, naïve bayes, dan artificial neural network dapat digunakan untuk menganalisa kinerja mahasiswa. Penelitian yang sudah dilakukan didapat bahwa pengujian dan validasi dengan menggunakan 10 cross falidation dengan mengukur tingkat accuracy dan ROC curve didapat bahwa dengan menggunakan data dua semester sebelumnya untuk memprediksi kinerja mahasiswa memiliki akurasi yang paling tinggi adalah metode decision tree sebesar 67,63% dengan nilai  ROC curve masuk kedalam good classification.

 

Kata Kunci: Data Mining, Prestasi Belajar, Kinerja Mahasiswa

 

Downloads

Download data is not yet available.

References

Aher, Sunita,. And Lobo. (2011). Data Mining in Educational System using WEKA. International Conference on Emerging Technology Trends (ICETT) 2011.

Aher, Sunita,. And Lobo. (2011). Data Mining in Educational System using WEKA. International Conference on Emerging Technology Trends (ICETT) 2011.

Baradwaj, Brijesh,. And Pal, Saurabh. (2011). Mining Educational Data to Analyze Students‟ Performance. International Journal of Advanced Computer Science and Applications, Vol. 2, No. 6, 2011.

Chandra, E., dan Nandhini, K.. (2005). Predicting Student Performance using Classification Techniques. Proceedings of SPIT – IEEE Colloquium and International Conference. Mumbai. India Volumen 5, 83.

Cripps, Al. (1996). Using Artificial Neural Nets to Predict Academic Performance. ACM Symposium on Applied Computing

Gorunescu, Florin. (2011). Data Mining Concepts, Models and Techniques. Springer

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. Proc. of the 14th International Joint Conference on Artificial Intelligence: IJCAI-95

Kovacic, Zlatko. (2010). Early Prediction of Student Success: Mining Students Enrolment Data. Proceedings of Informing Science & IT Education Conference (InSITE).

Lin, J. Imbrie P.K,. and Reid Kenneth J. (2009). Student Retention Modelling: An Evaluation of Different Methods and their Impact on Prediction Results. Proceedings of the Research in Engineering Education Symposium.

Maucary, Chady. (2011). Data Mining for Engineering Schools Predicting Students’ Performance and Enrollment in Masters Programs. (IJACSA) International Journal of Advanced Computer Science and Applications.

Oladokum, V.O.,. Adebanjo, A.T,. and Charles-Owaba. (2008). Predicting Students’ Academic Performance using Artificial Neural Network: A Case Study of an Engineering Course. The Pacific Journal of Science and Technology.

Olson, David, and Yong, Shi. (2008). Pengantar Ilmu Penggalian Data Bisnis (Chriswan Sungkono, Penerjemah). Jakarta : Salemba empat.

Olson, David and Delen Dursun. (2008). Advanced Data Mining Techniques. Springer.

Pusat Bahasa. (2008). Kamus besar bahasa Indonesia. Gramedia Pustaka Utama. Jakarta.

Shannaq, Boumedyen., Rafael, Yusuppov., and Alexandro. (2010). Student Relationship in Higher Education Using Data Mining Techniques. Global Journal of Computer Science and Technology Vol. 10 Issue 11 (Ver. 1.0) October 2010.

Slameto. (2010). Belajar dan Faktor-Faktor yang Mempengaruhinya. Rineka Cipta.

Surjeet Kumar, Brijesh Bharadwaj, and Saurabh Pal. (2012). Mining Education Data to Predict Student’s Retention: A comparative Study. (IJCSIS) International Journal of Computer Science and Information Security.

Tan, P., M. Steibach, and V. Kumar. (2006). Introduction to Data Mining. Pearson Addison Wesley Boston.

Turban, E., Aronson, J.E., & Liang, T. (2005). Decision Support Systems and Intelligent Systems (7th ed.). Upper Saddle River, NJ: Pearson Education Inc.

Weng, Fumei. (2010). Modelling IT Student Retention at Taiwanese Higher Education Institutions.thesis School of Business Information Technology and Logistics College of Business RMIT University 2010.

Witten, Ian H. Eibe, Frank. And Hall, Mark A. (2011). Data Mining Practical Machine Learning Tools and Techniques Third Edition. The Morgan Kaufmann series in data management systems

Yadav, Surjeet Kumar. Bharadwaj, Brijesh, and Pal, Saurabh. (2012). Mining Education Data to Predict Student’s Retention: A comparative Study. (IJCSIS) International Journal of Computer Science and Information Security, Vol. 10, No. 2, 2012

IBM, IBM SPSS Modeler CRISP-DM Guide, http://www.crisp-dm.org/software/analytics/spss/documentation/modeler/14.2/en/CRISP_DM.pdf (diunduh tanggal 03 Juli 2012).

Published

2016-02-29

How to Cite

Defiyanti, S. (2016). Analisis dan Prediksi Kinerja Mahasiswa Menggunakan Teknik Data Mining. Syntax : Jurnal Informatika, 2(01). https://doi.org/10.35706/syji.v2i01.192

Issue

Section

Artikel