PREDIKSI KELULUSAN MAHASISWA DENGAN METODE ALGORITMA C4.5
DOI:
https://doi.org/10.35706/syji.v2i02.227Abstract
The world of education is a valuable asset for the development of science that continues to grow and constantly require appropriate analyzes as a current evaluation of materials for the development of education itself, in this case I tried to do research in predicting graduation with C45 algorithm method, while the research object is a student, the results obtained turned out its outline is the effect of gender on very high graduation, in this case the female gender who received a high percentage compared to male gender.
Â
Keywords: Algoritma C45, Data Mining, Decision Tree
Downloads
References
Aurelie Harbelot. (2011). Underscpecified Quantification, Technical Report Universiti Of Cambride United Kindom
C.R.Kothari. (2004). Research Methology Methods and Techniques (Second Revised Edition). India: New Age International Limited
Dian Oktafia dan D.I. Crispina Pardede. (2010) Perbandingan Kinerja Algoritma Decision Tree dan Naive Bayes dalam Prediksi Kebangrutan, Jakarta
Firmansyah. (2011). Penerapan Algoritma Klasifikasi c4.5 Untuk Penentuan kelayakan Pemberian Kredit Koperasi, Jakarta
Florin Gorunescu (2011) Data Mining Concept, Model and Techniques, Intelligent System Reference Library, Vol 12
Gennady L. Andrienko dan Natalia V. Andrienko. (1999). Data Mining with C4.5 and Interactive Cartographic Visualization, Germany
Han, j., dan Kamber, M. (2006). Data Mining Concept and Techniques . San fansisco: Morgan Kauffman
Henny Leidiyana. (2011). Komparasi Algoritma Klasifikasi Data Mining Dalam Penentuan Resiko Kredit Kepemilikan Kendaraan Bemotor, Jakarta
Ian H.Witten, Eibe Frank dan Mark A. Hall. (2011). Data Mining Practical Machine Learning Tools and Techniques Third Edition, Morgan Kaufmann
Jiawei Han dan Jing Gao. (2009). Research Challenges for Data Mining in Science and Engineering, University Of Ilinois at Urbana-Champaign
Marco Aldenucci, Salvatore Ruggieri dan Massimo Torquati. (2011). Porting Dcision Tree Building adn Pruning Algoritms to Multicore using FastFlow, Dipantimento di Informatica
Oded Maimon dan Lior Rokach. (2010). Data Mining and Knowledge Discovery Handbook Second Edition, Springer New York Dordrecht Heidelberg, London
Olcay Taner Yıldız. (2011). Unvariate Decision Tree Introduction Using Maximum Margin Classification, Intambul Turkey: Lain Stewart
P.Bhargavi,M.Sc.,M.Tech dan Dr.S.Jyothi,M.Sc.,M.S,Ph.d. (2009). Applying Naive Bayes Data Mining Technique for Classification of Agricultural Land Soils, International Journal of Computer Science and Network Security, Vol 9 No. 8 Agustus 2009
Veronika S Moertini. (2002). Data Mining Sebagai Solusi Bisnis, Integral, Vol. 7 No. 1 April 2002