Mining Data In Identification Of Consumer Patterns Of Agricultural Machine Sales Using Fp-Growth Algorithm
Abstract
The sales transaction data for agricultural machinery at the Mandiri Jaya Teknik Solok store is a large data set making it difficult to identify consumer purchasing patterns. Large data sets can be processed into useful information. Sales transaction data available at the Mandiri Jaya Teknik Solok store can be processed into useful information to increase sales. This study aims to identify consumer purchasing patterns in order to know which items are often sold and to find out which items need to be stocked more and to increase sales. The data that is processed in this study uses the sales transaction data obtained from the sales invoice of Toko Mandiri Jaya Teknik Solok. Data is in the form of sales data for 13 weeks of 20 items with a minimum support value of 15% and a confidence value of 60%. The method uses one of the data mining techniques associated with the FP-Growth algorithm, where the Fp-Growth algorithm uses the concept of tree development in searching for the types of items that are often purchased (frequency item sets). The tools used are Rapidminer 9.8 so that the purchase patterns of goods are obtained which are used as information to predict the level of frequently sold items. The result of the sales data processing process is the association rule. Association Rule is obtained in the form of a relationship between goods sold together with other goods in a transaction. From this pattern, it can be recommended to the shop owner as information for preparing stock of goods to increase sales results. This research is very suitable to be applied to determine the patterns of consumer spending such as the relationship of each item purchased by consumers, so this research is appropriate for use by stores.
Downloads
References
Rosyidah, U. A., & Oktavianto, H. (2019). Pencarian Pola Asosiasi Keluhan Pasien Menggunakan Teknik Association Rule Mining. INFORMAL: Informatics Journal, 3(1), 1. DOI: https://doi.org/10.19184/isj.v3i1.5541.
Lestari, Y. D(2015). Penerapan Data Mining Menggunakan Algoritma Fp-Tree Dan Fp-Growth Pada Data Transaksi Penjualan Obat. Seminar Nasional Teknologi Informasi dan Komunikasi (SNASTIKOM). 1, 2. DOI: https://doi.org/10.31227/osf.io/t93uv.
Amelia, R., & Utomo, D. P. (2019). Analisa Pola Pemesanan Produk Modern Trade Independent Dengan Menerepakan Algoritma Fp. Growth (Studi Kasus: PT. Adam Dani Lestari). KOMIK (Konferensi Nasional Teknologi Informasi Dan Komputer), 3(1). DOI: https://doi.org/10.30865/komik.v3i1.1622
Utama, K. M. R. A., Umar, U., Yudhana, A.(2020). Penerapan Algoritma Fp-Growth Untuk Penentuan Pola Pembelian Transaksi Penjualan Pada Toko Kgs Rizky Motor. Jurnal Dinamika, 25(1). DOI: https://doi.org/10.35315/dinamik.v25i1.7870.
Abdullah, A. (2018). Rekomendasi Paket Produk Guna Meningkatkan Penjualan Dengan Metode FP-Growth. Khazanah Informatika: Jurnal Ilmu Komputer Dan Informatika, 4(1), 21. DOI: https://doi.org/10.23917/khif.v4i1.5794.
Maulana, A., & Fajrin, A. A. (2018). Penerapan Data Mining untuk Analisis Pola Pembelian Konsumen dengan Algoritma Fp-Growth pada Data Transaksi Penjualan Spare Part Motor. Klik-Kumpulan Jurnal Ilmu Komputer, 5(1), 27. DOI: http://dx.doi.org/10.20527/klik.v5i1.100.
Aditiya, R., Defit, S,. Nurcahyo, G. W.(2020). Prediksi Tingkat Ketersediaan Stock Sembako Menggunakan Algoritma FP-Growth dalam Meningkatkan Penjualan. Jurnal Informatika Ekonomi Bisnis. 2. 3. DOI: 10.37034/infeb.v2i3.44.
Setiawan, A., & Anugrah, I. G. (2019). Penentuan Pola Pembelian Konsumen pada Indomaret GKB Gresik dengan Metode FP-Growth. Jurnal Nasional Komputasi Dan Teknologi Informasi (JNKTI), 2(2), 115. DOI: https://doi.org/10.32672/jnkti.v2i2.1564.
Astrina, I., Arifin, M. Z., & Pujianto, U. (2019). Penerapan Algoritma FP-Growth dalam Penentuan Pola Pembelian Konsumen pada Kain Tenun Medali Mas. Matrix : Jurnal Manajemen Teknologi Dan Informatika, 9(1), 32. DOI: https://doi.org/10.31940/matrix.v9i1.1036 .Yuhefizar, Santosa, B., Eddy, I. K. P., & Suprapto, Y. K. (2013). Combination of Cluster Method for Segmentation of Web Visitors. TELKOMNIKA, 11(1), 207-214. DOI: http://dx.doi.org/10.12928/telkomnika.v11i1.906.
Setyo, W. N., Wardhana, S.(2019). Implementasi Data Mining Pada Penjualan Produk Di Cv Cahaya Setya Menggunakan Algoritma Fp-Growth. Jurnal Pengkajian dan Penerapan Teknik Informatika. 12, 1. DOI: https://doi.org/10.33322/petir.v12i1.416
Mashud, Wisda(2019). Designing an Application for Analyzing Consumer Spending Patterns Using the Frequent Pattern Growth Algorithm. Jurnal Penelitian dan Informatika. 9(2). DOI: http://dx.doi.org/10.17933/jppi.2019.090206.
Lisnawati, H., Sinaga, A.,(2020). Data Mining With Associated Methods To Predict Consumer Purchasing Patterns. International Journal of Modern Education and Computer Science (IJMECS). 12(5). DOI: 10.5815/ijmecs.2020.05.01.
Wahana, A., Maylawati, D. S., Irfan, M., & Effendy, H. (2018). Supply chain management using fp-growth algorithm for medicine distribution. Journal of Physics: Conference Series, 978, 012018. DOI: https://doi.org/10.1088/1742-6596/978/1/012018.
Wang, T., Hou, J., & Yu, Z. (2018). Analysis of Hierarchical and Time-phased Model of Large-scale Power Grid Based on Fpgrowth Algorithm. IOP Conference Series: Earth and Environmental Science, 192, 012031. DOI: https://doi.org/10.1088/1755-1315/192/1/012031.
Andi, T., & Utami, E. (2018). Association Rule Algorithm With FP Growth For Book Search. IOP Conference Series: Materials Science and Engineering, 434, 012035. DOI: https://doi.org/10.1088/1757899x/434/1/01203.
Faza, S., Rahmat, R. F., Nababan, E. B., Arisandi, D., & Effendi, S. (2018). The association rules search of Indonesian university graduate’s data using FP-growth algorithm. IOP Conference Series: Materials Science and Engineering, 308, 012017. DOI: https://doi.org/10.1088/1757-899x/308/1/012017.
Hardiyanti, D. Y., Novianti, H., & Rifai, A. (2018). Penerapan Algoritma Fp-Growth Pada Sistem Informasi Perpustakaan. Computer Engineering, Science and System Journal, 3(1), 75. DOI: https://doi.org/10.24114/cess.v3i1.7789.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 SYSTEMATICS
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).