Mining Data In Identification Of Consumer Patterns Of Agricultural Machine Sales Using Fp-Growth Algorithm

Authors

  • Eka Sofianti Universitas Putra Indonesia YPTK Padang
  • Sarjo Defit Universitas Putra Indonesia YPTK Padang
  • Yuhandri Universitas Putra Indonesia YPTK Padang

Abstract

The sales transaction data for agricultural machinery at the Mandiri Jaya Teknik Solok store is a large data set making it difficult to identify consumer purchasing patterns. Large data sets can be processed into useful information. Sales transaction data available at the Mandiri Jaya Teknik Solok store can be processed into useful information to increase sales. This study aims to identify consumer purchasing patterns in order to know which items are often sold and to find out which items need to be stocked more and to increase sales. The data that is processed in this study uses the sales transaction data obtained from the sales invoice of Toko Mandiri Jaya Teknik Solok. Data is in the form of sales data for 13 weeks of 20 items with a minimum support value of 15% and a confidence value of 60%. The method uses one of the data mining techniques associated with the FP-Growth algorithm, where the Fp-Growth algorithm uses the concept of tree development in searching for the types of items that are often purchased (frequency item sets). The tools used are Rapidminer 9.8 so that the purchase patterns of goods are obtained which are used as information to predict the level of frequently sold items. The result of the sales data processing process is the association rule. Association Rule is obtained in the form of a relationship between goods sold together with other goods in a transaction. From this pattern, it can be recommended to the shop owner as information for preparing stock of goods to increase sales results. This research is very suitable to be applied to determine the patterns of consumer spending such as the relationship of each item purchased by consumers, so this research is appropriate for use by stores.

Downloads

Download data is not yet available.

References

Rosyidah, U. A., & Oktavianto, H. (2019). Pencarian Pola Asosiasi Keluhan Pasien Menggunakan Teknik Association Rule Mining. INFORMAL: Informatics Journal, 3(1), 1. DOI: https://doi.org/10.19184/isj.v3i1.5541.

Lestari, Y. D(2015). Penerapan Data Mining Menggunakan Algoritma Fp-Tree Dan Fp-Growth Pada Data Transaksi Penjualan Obat. Seminar Nasional Teknologi Informasi dan Komunikasi (SNASTIKOM). 1, 2. DOI: https://doi.org/10.31227/osf.io/t93uv.

Amelia, R., & Utomo, D. P. (2019). Analisa Pola Pemesanan Produk Modern Trade Independent Dengan Menerepakan Algoritma Fp. Growth (Studi Kasus: PT. Adam Dani Lestari). KOMIK (Konferensi Nasional Teknologi Informasi Dan Komputer), 3(1). DOI: https://doi.org/10.30865/komik.v3i1.1622

Utama, K. M. R. A., Umar, U., Yudhana, A.(2020). Penerapan Algoritma Fp-Growth Untuk Penentuan Pola Pembelian Transaksi Penjualan Pada Toko Kgs Rizky Motor. Jurnal Dinamika, 25(1). DOI: https://doi.org/10.35315/dinamik.v25i1.7870.

Abdullah, A. (2018). Rekomendasi Paket Produk Guna Meningkatkan Penjualan Dengan Metode FP-Growth. Khazanah Informatika: Jurnal Ilmu Komputer Dan Informatika, 4(1), 21. DOI: https://doi.org/10.23917/khif.v4i1.5794.

Maulana, A., & Fajrin, A. A. (2018). Penerapan Data Mining untuk Analisis Pola Pembelian Konsumen dengan Algoritma Fp-Growth pada Data Transaksi Penjualan Spare Part Motor. Klik-Kumpulan Jurnal Ilmu Komputer, 5(1), 27. DOI: http://dx.doi.org/10.20527/klik.v5i1.100.

Aditiya, R., Defit, S,. Nurcahyo, G. W.(2020). Prediksi Tingkat Ketersediaan Stock Sembako Menggunakan Algoritma FP-Growth dalam Meningkatkan Penjualan. Jurnal Informatika Ekonomi Bisnis. 2. 3. DOI: 10.37034/infeb.v2i3.44.

Setiawan, A., & Anugrah, I. G. (2019). Penentuan Pola Pembelian Konsumen pada Indomaret GKB Gresik dengan Metode FP-Growth. Jurnal Nasional Komputasi Dan Teknologi Informasi (JNKTI), 2(2), 115. DOI: https://doi.org/10.32672/jnkti.v2i2.1564.

Astrina, I., Arifin, M. Z., & Pujianto, U. (2019). Penerapan Algoritma FP-Growth dalam Penentuan Pola Pembelian Konsumen pada Kain Tenun Medali Mas. Matrix : Jurnal Manajemen Teknologi Dan Informatika, 9(1), 32. DOI: https://doi.org/10.31940/matrix.v9i1.1036 .Yuhefizar, Santosa, B., Eddy, I. K. P., & Suprapto, Y. K. (2013). Combination of Cluster Method for Segmentation of Web Visitors. TELKOMNIKA, 11(1), 207-214. DOI: http://dx.doi.org/10.12928/telkomnika.v11i1.906.

Setyo, W. N., Wardhana, S.(2019). Implementasi Data Mining Pada Penjualan Produk Di Cv Cahaya Setya Menggunakan Algoritma Fp-Growth. Jurnal Pengkajian dan Penerapan Teknik Informatika. 12, 1. DOI: https://doi.org/10.33322/petir.v12i1.416

Mashud, Wisda(2019). Designing an Application for Analyzing Consumer Spending Patterns Using the Frequent Pattern Growth Algorithm. Jurnal Penelitian dan Informatika. 9(2). DOI: http://dx.doi.org/10.17933/jppi.2019.090206.

Lisnawati, H., Sinaga, A.,(2020). Data Mining With Associated Methods To Predict Consumer Purchasing Patterns. International Journal of Modern Education and Computer Science (IJMECS). 12(5). DOI: 10.5815/ijmecs.2020.05.01.

Wahana, A., Maylawati, D. S., Irfan, M., & Effendy, H. (2018). Supply chain management using fp-growth algorithm for medicine distribution. Journal of Physics: Conference Series, 978, 012018. DOI: https://doi.org/10.1088/1742-6596/978/1/012018.

Wang, T., Hou, J., & Yu, Z. (2018). Analysis of Hierarchical and Time-phased Model of Large-scale Power Grid Based on Fpgrowth Algorithm. IOP Conference Series: Earth and Environmental Science, 192, 012031. DOI: https://doi.org/10.1088/1755-1315/192/1/012031.

Andi, T., & Utami, E. (2018). Association Rule Algorithm With FP Growth For Book Search. IOP Conference Series: Materials Science and Engineering, 434, 012035. DOI: https://doi.org/10.1088/1757899x/434/1/01203.

Faza, S., Rahmat, R. F., Nababan, E. B., Arisandi, D., & Effendi, S. (2018). The association rules search of Indonesian university graduate’s data using FP-growth algorithm. IOP Conference Series: Materials Science and Engineering, 308, 012017. DOI: https://doi.org/10.1088/1757-899x/308/1/012017.

Hardiyanti, D. Y., Novianti, H., & Rifai, A. (2018). Penerapan Algoritma Fp-Growth Pada Sistem Informasi Perpustakaan. Computer Engineering, Science and System Journal, 3(1), 75. DOI: https://doi.org/10.24114/cess.v3i1.7789.

Downloads

Published

2020-12-01

How to Cite

[1]
E. Sofianti, S. Defit, and Yuhandri, “Mining Data In Identification Of Consumer Patterns Of Agricultural Machine Sales Using Fp-Growth Algorithm”, Systematics Journal, vol. 2, no. 3, pp. 144–156, Dec. 2020.