Classification of Super Air Jet Initial Cabin Crew Candidates Using K-Nearest Neighbor (KNN) Method

Klasifikasi Calon Awak Kabin Awal Super Air Jet Menggunakan Metode K-Nearest Neighbor (KNN)

Authors

  • Ahmad Jurnaidi Wahidin Universitas Bina Sarana Informatika
  • Reza Maulana Sekolah Tinggi Teknologi Terpadu Nurul Fikri

DOI:

https://doi.org/10.35706/sys.v3i2.5804

Abstract

At the time of the corona virus outbreak that hit Indonesia and the world which had an impact on various sectors including transportation, optimistically that the Indonesian domestic flight market was still open with strong demand, a new airline, Super Air Jet (SAJ) was created in March 2021. In an effort to improve SAJ services screening qualified human resources, including the process of screening candidates for initial cabin crew. To support this process, it is necessary to have a method used to classify candidates for initial cabin crew at the administrative stage. K-Nearest Neighbor (KNN) which is one method for classifying is expected to provide a solution to the problems discussed. This study uses 10 training data that have 8 criteria to predict categories in 6 test data. From the calculation results using a value of k=5, the same results as the label on the initial test data resulted, which resulted in 2 data with the Stop prediction class and 4 data with the Advanced prediction class. To measure the performance of the KNN method, a test was conducted using a confusion matrix which resulted in a 100% accuracy value, a 100% precision value and a 100% recall value.

Downloads

Download data is not yet available.

References

Kemenkes, “Status Wabah Corona di Indonesia Ditetapkan sebagai Bencana Nasional,” kemkes.go.id, Jakarta, Mar. 15, 2020.

Puspa A. W, “Kantongi Izin AOC, Super Air Jet Segera Terbangkan 3 Pesawat A320-200,” ekonomi.bisnis.com, 2021.

Murti M. W, “Super Air Jet, All-Indonesian Low-cost Carrier Launches,” en.tempo.co, Jakarta, May 03, 2021.

Rahma A, “Potret Pramugari Super Air Jet, Maskapai Baru Bergaya Milenial,” www.liputan6.com, May 03, 2021.

SAJ S. A. J, “Kisah Super Air Jet,” superairjet.com, 2021. (accessed 2021).

Khormarudin A. N, “Teknik Data Mining: Algoritma K-Means Clustering,” J. Ilmu Komput., pp. 1–12, 2016.

Nugraha A. R. D., Auliasari K., & Pranoto Y. A, “Implementasi Metode K-Nearest Neighbor (KNN) Untuk Seleksi Calon Karyawan Baru (Studi Kasus: BFI Finance Surabaya),” Vol 4(2), JATI (Jurnal Mhs. Tek. Inform.), 2020, pp. 14-20.

Yanosma D, Johar A, & Anggriani K, “Implementasi Metode K-Nearest Neighbor (KNN) dan Simple Addittive Weighting (SAW) dalam Pengambilan Keputusan Seleksi Anggota PASKIBRAKA,” Vol 4(2), Rekursif J. Inform., 2016, pp. 222-235.

Wahidin A. J, “Implementation of K-Means Algorithm in Determining Clustering of Lion Air Pilots,” Vol 3(1), SYSTEMATICS, 2021, pp. 211-220.

Winarso D., Arribe E. E, “Seleksi Pegawai dan Dosen UMRI Berbasis E-Recruitment Menggunakan Metode K-Nearest Neighbor,” Vol 8(2), Digit. Zo. J. Teknol. Inf. dan Komun., 2017. pp. 71-80.

Danial E., Warsinah N, Metode Penulisan Karya Ilmiah. Bandung, 2009.

Narkhede S, “Understanding Confusion Matrix,” 2018. https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62 (accessed 2021).

Downloads

Published

2021-08-01

How to Cite

[1]
Ahmad Jurnaidi Wahidin and Reza Maulana, “Classification of Super Air Jet Initial Cabin Crew Candidates Using K-Nearest Neighbor (KNN) Method: Klasifikasi Calon Awak Kabin Awal Super Air Jet Menggunakan Metode K-Nearest Neighbor (KNN)”, Systematics Journal, vol. 3, no. 2, pp. 249–262, Aug. 2021.

Issue

Section

Articles