Application of Convolution Neural Network Algorithm for Rice Type Detection Using Yolo v3

Penerapan Algoritma Convolution Neural Network untuk Deteksi Jenis Padi Menggunakan Yolo v3

Authors

  • Kiki Ahmad Baihaqi Universitas Buana Perjuangan Karawang
  • Yana Cahyana Universitas Buana Perjuangan Karawang

DOI:

https://doi.org/10.35706/sys.v3i2.5874

Abstract

Rice is a staple food that contains a lot of energy for human life. There are several types of rice that are often sold in rice shops in general, namely IR42 rice, Pera rice, glutinous rice and Pandan fragrant rice. For now, there are still many people who do not recognize the 4 types of rice, especially millennials, for this reason, research is carried out on the introduction of rice types. The purpose of this study is to make it easier for buyers to identify the type of rice that is in the rice shop so as to minimize fraud by rice traders. The method used in this study is the YOLO (You Only Look Once) v3 method for detecting rice types. The implementation of the image detection process using YOLO (You Only Look Once) v3 has been tested for 12 samples. Based on the results of testing 12 detection experiments on digital image objects, it was obtained 100% where in the picture there were 4 types of rice, 4 grains of rice and 3 types of rice shapes.

Downloads

Download data is not yet available.

References

Abi Rachman Wasril, D. (2020). Pembuatan Pendekteksi Obyek Dengan Metode You Only Look Once (YOLO) untuk Automated Teller Machine (ATM). Majalah Ilmiah UNIKOM.

Alexey AB, “AlexeyAB/darknet: Windows and Linux version of Darknet Yolo v3 v2 Neural Networks for object detection (Tensor Cores are used),” GitHub. 2019.

B. Benjdira, T. Khursheed, A. Koubaa, A. Ammar, and K. Ouni, “Car Detection using Unmanned Aerial Vehicles: Comparison between Faster R-CNN and YOLOv3,” 2019 1st Int. Conf. Unmanned Veh. Syst. UVS 2019, pp. 1–6, 2019

Dedy Agung Prabowo, D. (2018). Deteksi dan Perhitungan Objek Berdasarkan Warna menggunakan COlor Objek Tracking. Jurnal Pseudocode, Volume V nomor 2.

Hr.Wibi Bagas, D. (2020). Deteksi Buah untuk Klasifikasi Berdasarkan Jenis Dengan Algoritma Berbasis YOLOv3. Jurnal Resti (Rekayasa Sistem dan Teknologi Informasi), Vol.4 No.3.

J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,” 2018.

Muhammad Alfin Jimly Asshiddiqie, D. (2020). Deteksi Tanaman Tebu Pada Lahan Pertanian Menggunakan Metode Convolutional Neural Network. Jurnal Informatika dan Sistem Informasi Vol.1 No.1.

M. Ju, H. Luo, Z. Wang, B. Hui, and Z. Chang, “The application of improved YOLO V3 in multi- scale target detection,” Appl. Sci., vol. 9, no. 18, 2019.

Pandu Satrio, “Pengaruh Drone Terhadap Citra Yang Dihasilkan Pada Pemantauan Tanaman Padi” Sunita Nayak, “Training YOLOv3 : Deep Learning based Custom Object Detector | Learn OpenCV,”Learn OpenCV,2019.

Downloads

Published

2021-08-01

How to Cite

[1]
Kiki Ahmad Baihaqi and Yana Cahyana, “Application of Convolution Neural Network Algorithm for Rice Type Detection Using Yolo v3: Penerapan Algoritma Convolution Neural Network untuk Deteksi Jenis Padi Menggunakan Yolo v3”, Systematics Journal, vol. 3, no. 2, pp. 272–280, Aug. 2021.

Issue

Section

Articles