Prediction of Rice Field Planted Area with CRISP-DM Using Classification and Regression Tree (Cart) Algorithms
Prediksi Luas Tanam Sawah dengan CRISP-DM Menggunakan Algoritma Classification and Regression Tree (Cart)
DOI:
https://doi.org/10.35706/sys.v5i1.8755Abstract
Every year the area of paddy fields in Karawang Regency has increased and decreased due to land conversion. Climate change also causes changes in the amount of rain and rain patterns that cause shifts in the beginning of the season and the planting period. If the decrease in planting area will be affected, then the price of rice will increase and farmers will maintain the area and not convert their rice fields to function, therefore a study was conducted to predict the rice planting area in order to know the description of the area of rice planted in Karawang Regency will increase. , decreased or stabilized. So the search for information on the data on the area of rice planting in Karawang Regency was carried out. A total of 180 data were processed using data mining techniques so that they could mine information from the data. Data mining is a technique of extracting or new discoveries from large data and then extracting the data into information that can later be used. Experiments were carried out using the CART algorithm and cross validation using the Weka tools. The results of the evaluation carried out can be concluded that the CART algorithm using different K values provides different evaluation results. The performance of the algorithm is seen from the accuracy, precision, recall and F-Measurement, thus providing different performance values for each result. The value of k=8 has the highest accuracy value, which is 90% with precision 0.918%, recall 0.906% and F-measure 0.949%.
Downloads
References
B. Nuryanto, “Pengendalian Penyakit Tanaman Padi Berwawasan Lingkungan Melalui Pengelolaan Komponen Epidemik,” J. Penelit. dan Pengemb. Pertan., vol. 37, no. 1, p. 1, 2018, doi: 10.21082/jp3.v37n1.2018.p1-8.
T. N. Padilah and R. I. Adam, “Analisis Regresi Linier Berganda Dalam Estimasi Produktivitas Tanaman Padi Di Kabupaten Karawang,” FIBONACCI J. Pendidik. Mat. dan Mat., vol. 5, no. 2, p. 117, 2019, doi: 10.24853/fbc.5.2.117-128.
D. I. S. Utara, P. Algoritma, and M. Produksi, “Prediksi, Produksi, Beras,” vol. 4, no. 1, pp. 77–86, 2018.
D. A. Siregar and H. Hambali, “Alat Pembasmi Hama Tanaman Padi Otomatis Berbasis Mikrokontroler Menggunakan Tegangan Kejut Listrik,” JTEIN J. Tek. Elektro Indones., vol. 1, no. 2, pp. 55–62, 2020, doi: 10.24036/jtein.v1i2.17.
F. Yunita, “Penerapan Data Mining Menggunkan Algoritma K-Means Clustring Pada Penerimaan Mahasiswa Baru,” Sistemasi, vol. 7, no. 3, p. 238, 2018, doi: 10.32520/stmsi.v7i3.388.
D. B. Sastra, N. C. Aminuallah, S. Informasi, and S. Lanka, “Penerapan Data Mining Untuk Klasifikasi Mutu Padi,” vol. 3, no. 1, pp. 1–14, 2023.
N. V. B. Siahaan, P. Poningsih, D. Suhendro, D. Hartama, and S. Suhada, “Penerapan Data Mining Algoritma C4.5 Terhadap Prediksi Faktor Menurunnya Hasil Panen Padi,” Jurasik (Jurnal Ris. Sist. Inf. dan Tek. Inform., vol. 7, no. 1, p. 27, 2022, doi: 10.30645/jurasik.v7i1.412.
R. Takdirillah, “Penerapan Data Mining Menggunakan Algoritma Apriori Terhadap Data Transaksi Sebagai Pendukung Informasi Strategi Penjualan,” Edumatic J. Pendidik. Inform., vol. 4, no. 1, pp. 37–46, 2020, doi: 10.29408/edumatic.v4i1.2081.
A. Aribowo, R. Kuswandhie, and Y. Primadasa, “Penerapan dan Implementasi Algoritma CART Dalam Penentuan Kelayakan Penerima Bantuan PKH Di Desa Ngadirejo,” CogITo Smart J., vol. 7, no. 1, pp. 40–51, 2021, doi: 10.31154/cogito.v7i1.293.40-51.
A. Purnamawati, M. N. Winnarto, and M. Mailasari, “Analisis Cart (Classification and Regression Trees) Untuk Prediksi Pengguna Sepeda Berdasarkan Cuaca,” J. Teknoinfo, vol. 16, no. 1, p. 14, 2022, doi: 10.33365/jti.v16i1.1478.
N. I. Prabawati, Widodo, and M. F. Duskarnaen, “Kinerja Algoritma Classification a nd Regression Tree ( Cart ) da lam Mengklasifikasikan Lama Masa Studi Mahasiswa y ang Mengikuti Organisasi d i Universitas Negeri Jakarta Avalaiable at : Avalaiable at :,” J. Pinter, vol. 3, no. 2, pp. 139–145, 2019.
F. Haris and Kurniati, “Penerapan Algoritma Classification and Regression Tree (Cart) Untuk Klasifikasi Jurusan Siswa Baru Man 1 Oku Timur,” pp. 331–339, [Online]. Available: http://repository.umrah.ac.id/219/1/JURNAL ZUMROTUL MUTIAH.pdf.
B. Nurseptia, A. Voutama, N. Haeryana, and J. HSRonggo Waluyo, “Penerapan Algoritma K-Means Untuk Mengelompokkan Kabupaten/Kota Dalam Upaya Pemetaan Lapangan Pekerjaan Baru,” J. Teknol. Informasi), vol. 6, no. 2, pp. 181–186, 2022.
M. A. Hasanah, S. Soim, and A. S. Handayani, “Implementasi CRISP-DM Model Menggunakan Metode Decision Tree dengan Algoritma CART untuk Prediksi Curah Hujan Berpotensi Banjir,” J. Appl. Informatics Comput., vol. 5, no. 2, pp. 103–108, 2021, doi: 10.30871/jaic.v5i2.3200.
Abdussalam Amrullah, Intam Purnamasari, Betha Nurina Sari, Garno, and Apriade Voutama, “Analisis Cluster Faktor Penunjang Pendidikan Menggunakan Algoritma K-Means (Studi Kasus: Kabupaten Karawang),” J. Inform. dan Rekayasa Elektron., vol. 5, no. 2, pp. 244–252, 2022, doi: 10.36595/jire.v5i2.701.
A. Voutama and E. Novalia, “Perancangan Sistem Informasi Plakat Wisuda Berbasis Web Menggunakan UML dan Model Waterfall,” Syntax J. Inform., vol. 11, no. 1, pp. 36–49, 2022.
A. Y. Permana and A. Voutama, “Pemodelan UML Pada Sistem Penjualan Sembako Di Toko Amshop Berbasis Website,” vol. 7, no. 1, pp. 41–50, 2022.
A. Voutama, G. Garno, A. S. Y. Irawan, and E. Novalia, “Design of E-Commerce Distro Using Rapid Application Development (Rad) Model,” J. Ris. Inform., vol. 4, no. 4, pp. 363–370, 2022, doi: 10.34288/jri.v4i4.357.
A. Prasetyo, A. Voutama, N. Heryana, and J. H. Ronggowaluyo, “Penerapan Logika Fuzzy Tsukamoto Dalam Perolehan Tunjangan Hari Raya,” J. Teknol. Informasi), vol. 6, no. 2, 2022.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 SYSTEMATICS
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).