EFFECTIVENESS TEST OF APPLICATION OF MACHINE LEARNING CLASSIFICATION FOR AIRLINE CUSTOMER SATISFACTION SURVEY X
DOI:
https://doi.org/10.35261/barometer.v8i1.6566Abstract
The use of air transportation is one way that transportation may make it simpler for people to get from one place to another place rapidly. As a result, airlines must enhance the quality of their services by using passengers feedback. Using the data mining method makes it simple to categorize consumer satisfaction from airline surveys. This study focuses on the customer satisfaction classification method created using machine learning with the K-nearest neighbor, decision tree, and random forest models to make it simpler for airlines to categorize. The accuracy, precision, recall, and F1-Score statistics are used to analyze the performance of the classification machine learning model. According to the findings of the performance study, the machine learning decision tree and random forest models have good performance results. The accuracy values for the testing data for the decision tree and random forest models, respectively, are 92,96% and 93,22%. The cross-validation method was also used to examine the two machine learning models to determine which one is more practical to use. The decision tree model and the random forest both have accuracy levels of 96% and 94,5%, respectively, according to the findings of the cross-validation test. Decision trees and random forests can be used to help airline X determine customer satisfaction levels if the cross-validation value is increased.
Downloads
References
Widjaja, E. L., & Harianto, A. (2017). Analisa Pengaruh Kualitas Layanan Terhadap Kepuasan Penumpang Maskapai Penerbangan Batik Air. Jurnal Hospitality dan Manajemen Jasa, 5(2).
Hayadi, B., Kim, J., Hulliyah, K., & Sukmana, H. (2021). Predicting Airline Passenger Satisfaction with Classification Algorithms. International Journal of Informatics and Information Systems, 4(1), 82-94. doi:https://doi.org/10.47738/ijiis.v4i1.80.
Maryanto, B. (2017). Big Data dan Pemanfaatannya dalam Berbagai Sektor. Media Informatika, 16(2), 14-19.
Mardi, Y. (2017). Data Mining: Klasifikasi Menggunakan Algoritma C4. 5. Jurnal Edik Informatika Penelitian Bidang Komputer Sains dan Pendidikan Informatika, 2(2), 213-219.
Moro, S., Esmerado, J., Ramos, P., & Alturas, B. (2019). Evaluating a guest satisfaction model through data mining. International Journal of Contemporary Hospitality Management.
Ahmad, A. (2017). Mengenal artificial intelligence, machine learning, neural network, dan deep learning. J. Teknol. Indones, 3.
Roihan, A., Sunarya, P. A., & Rafika, A. S. (2020). Pemanfaatan Machine Learning dalam Berbagai Bidang. IJCIT (Indonesian J. Comput. Inf. Technol., 5(1), 75-82.
Thupae, R., Isong, B., Gasela, N., & Abu-Mahfouz, A. M. (2018, October). Machine learning techniques for traffic identification and classifiacation in SDWSN: A survey. In IECON 2018-44th annual conference of the IEEE Industrial Electronics Society (pp. 4645-4650). IEEE.
Das, S., & Nene, M. J. (2017, March). A survey on types of machine learning techniques in intrusion prevention systems. In 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET) (pp. 2296-2299). IEEE.
Krisandi, N., & Helmi, B. P. (2013). Algoritma k-Nearest Neighbor dalam Klasifikasi Data Hasil Produksi Kelapa Sawit pada PT. Minamas Kecamatan Parindu. Bimaster: Buletin Ilmiah Matematika, Statistika dan Terapannya, 2(1).
Pulungan, W. A., Mulyani, Y., & Sulistiono, W. E. (2019). Identifikasi Kematangan Buah Kopi Menggunakan Jaringan Syaraf Tiruan Learning Vector Quantization. Barometer, 4(2), 217-219.
Hayadi, B., Kim, J., Hulliyah, K., & Sukmana, H. (2021). Predicting Airline Passenger Satisfaction with Classification Algorithms. International Journal of Informatics and Information Systems, 4(1), 82-94. doi:https://doi.org/10.47738/ijiis.v4i1.80.
https://www.kaggle.com/datasets/teejmahal20/airline-passenger-satisfaction, diakses Oktober 2021.
https://www.geeksforgeeks.org/data-preprocessing-in-data-mining/, diakses Januari 2022.
Baharuddin, M. M., Azis, H., & Hasanuddin, T. (2019). Analisis Performa Metode K-Nearest Neighbor untuk Identifikasi Jenis Kaca. ILKOM Jurnal Ilmiah, 11(3), 269-274.
Sutoyo, I. (2018). Implementasi Algoritma Decision Tree Untuk Klasifikasi Data Peserta Didik. Pilar Nusa Mandiri: Journal of Computing and Information System, 14(2), 217-224.
Primajaya, A., & Sari, B. N. (2018). Random Forest Algorithm for Prediction of Precipitation. Indonesian Journal of Artificial Intelligence and Data Mining, 1(1), 27-31.
Religia, Y., & Amali, A. (2021). Perbandingan Optimasi Feature Selection pada Naïve Bayes untuk Klasifikasi Kepuasan Airline Passenger. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(3), 527-533.
Naufal, M. F. (2021). Analisis Perbandingan Algoritma Svm, Knn, Dan Cnn untuk Klasifikasi Citra Cuaca. Jurnal Teknologi Informasi dan Ilmu Komputer, 8(2), 311-317.