Penerapan Algoritma Evolutionary dan Nearest Neighbor untuk Optimasi Rute Distribusi

Authors

  • Rika Sri Utami Department of Electrical Engineering, Universitas Syiah Kuala
  • Riski Arifin Department of Industrial Engineering, Universitas Syiah Kuala
  • Raihan Dara Lufika Department of Industrial Engineering, Universitas Syiah Kuala
  • Rafi Dio Department of Industrial Engineering, Universitas Maritim Raja Ali Haji
  • Hendrik Vicarlo Saragih Manihuruk Department of Logistic Engineering, Institut Teknologi Kalimantan

DOI:

https://doi.org/10.35261/gijtsi.v5i02.12518

Abstract

The distribution route is a common issue faced by companies. Companies need to distribute goods to optimize delivery and operational shipping costs. Company XYZ distributes goods to 9 retailers. The problem encountered is that delivery relies only on the intuition of the delivery operators, which is considered suboptimal. Therefore, finding the shortest distribution distance is necessary, one of which can be done using an evolutionary algorithm. An evolutionary algorithm is a population-based stochastic search used to find optimal solutions to a problem. Additionally, distributing goods using the nearest neighbor method determines the route based on the shortest distance between retailers. Thus, the purpose of this study is to find the shortest distribution distance for goods delivered to 9 retailers using an evolutionary algorithm and the nearest neighbor method. The results show that using the evolutionary algorithm, the minimum total distance is 54.5 kilometers, with the route being warehouse-2-1-5-9-4-6-7-3-8-warehouse, while using the nearest neighbor method yields a distance of 55 kilometers, resulting in a difference of 0.5 kilometers.

Downloads

Download data is not yet available.

References

S. Chopra and P. Meindl, Supply Chain Management Strategy, Planning, and Operations. Supply Chain Management Strategy, Planning , and Operations., vol. 53, no. 9. 2019.

D. Wawan Saputra, “Optimalisasi Rute Distribusi Kurir Menggunakan Metode Traveling Salesman Problem (Studi Kasus: JNE Balige),” G-Tech: Jurnal Teknologi Terapan, vol. 6, no. 2, pp. 159–165, 2022, doi: 10.33379/gtech.v6i2.1577.

S. Sangwan, “(PDF) Literature Review on Travelling Salesman Problem | ResearchGate,” International Journal of Research, vol. 05, no. June 2018, pp. 1152–1155, 2018.

S. A. Muhamad Galih and R. Sukmadewi, “Optimalisasi Alur Distribusi: Memperlancar Efisiensi Melalui Daftar Harga Pengiriman Dan Moda Transportasi Yang Strategis,” Ecobisma (Jurnal Ekonomi, Bisnis Dan Manajemen), vol. 11, no. 1, pp. 77–86, 2024, doi: 10.36987/ecobi.v11i1.5263.

L. G. A. Candrawati and I. G. A. G. A. Kadyanan, “Optimasi Traveling Salesman Problem (TSP) Untuk Rute Paket Wisata Di Bali dengan Algoritma Genetika,” Jurnal Ilmiah Komputer, vol. 10, no. 1, pp. 27–32, 2017.

T. Bartz‐Beielstein, J. Branke, J. Mehnen, and O. Mersmann, “Evolutionary Algorithms,” WIREs Data Mining and Knowledge Discovery, vol. 4, no. 3, pp. 178–195, May 2014, doi: 10.1002/widm.1124.

N. A. Fitriani, R. A. Pratama, S. Zahro, P. H. Utomo, and T. S. Martini, “Solving capacitated vehicle routing problem using saving matrix, sequential insertion, and nearest neighbor of product ‘X’ in Grobogan district,” 2021, p. 020007. doi: 10.1063/5.0039295.

Lidiawati, H. Setiawan, A. I. Ramdhani, Satria, Sulistyowati, and K. Mukiman, “Determining The Delivery Of Goods Using The K-Nearest Neighbor Algorithm And The Saving Matrix Method To Obtain The Optimal Route And Save Costs,” in 2023 International Conference on Computer Science, Information Technology and Engineering (ICCoSITE), 2023, pp. 957–961. doi: 10.1109/ICCoSITE57641.2023.10127714.

J. Halim, R. M. Heryanto, and D. T. Liputra, “Penentuan Rute Distribusi Menggunakan Metode Savings Matrix dengan Algoritma Nearest Insert, Nearest Neighbour, dan Farthest Insert pada UMKM Peralatan Plastik,” Go-Integratif : Jurnal Teknik Sistem dan Industri, vol. 4, no. 01, pp. 33–47, May 2023, doi: 10.35261/gijtsi.v4i01.8727.

F. Ahmad and H. F. Muharram, “PENENTUAN JALUR DISTRIBUSI DENGAN METODE SAVING MATRIKS,” Competitive, vol. 13, no. 1, pp. 45–66, Dec. 2018, doi: 10.36618/competitive.v13i1.346.

K. K. Amozhita, A. Suyitno, and Mashuri, “Menyelesaikan Travelling Salesman Problem (TSP) dengan Metode Dua Sisi Optimal pada PT. Es Malindo Boyolali,” Unnes Journal of Mathematics, vol. 8, no. 1, pp. 20–29, 2019.

Y. Maruhawa, H. Yenni, U. Rio, and F. Zoromi, “Penerapan Metode Differential Evolution dalam Menentukan Rute Distribusi Produk,” Jutisi: Jurnal Ilmiah Teknik Informatika dan Sistem Informasi, vol. 12, no. 1, Apr. 2023.

G. C. Ramadhan, P. Bagus W, and Y. Diah Rosita, “Penentuan Rute Optimal Untuk Jasa Pengiriman Barang Menggunakan Algoritma Genetika,” JTIM : Jurnal Teknologi Informasi dan Multimedia, vol. 5, no. 1, pp. 48–55, May 2023, doi: 10.35746/jtim.v5i1.322.

A. Sutoni and I. Apipudin, “OPTIMALISASI PENENTUAN RUTE DISTRIBUSI PUPUK UNTUK MEMINIMALKAN BIAYA TRANSPORTASI DENGAN METODE SAVING MATRIX,” SPEKTRUM INDUSTRI, vol. 17, no. 2, p. 143, Oct. 2019, doi: 10.12928/si.v17i2.13139.

O. Lähdeaho and O.-P. Hilmola, “An exploration of quantitative models and algorithms for vehicle routing optimization and traveling salesman problems,” Supply Chain Analytics, vol. 5, p. 100056, Mar. 2024, doi: 10.1016/j.sca.2023.100056.

H. M. Asih, R. A. C. Leuveano, A. Rahman, and M. Faishal, “TRAVELING SALESMAN PROBLEM WITH PRIORITIZATION FOR PERISHABLE PRODUCTS IN YOGYAKARTA, INDONESIA,” Journal of Advanced Manufacturing Technology (JAMT), vol. 16, no. 3, Dec. 2022, [Online]. Available: https://jamt.utem.edu.my/jamt/article/view/6405

J. O. Muladi, K. Kristiansyah Dezzano, A. Febrianto, A. C. Kurniawan, N. Ruswandi, and A. A. N. P. Redi, “Optimasi Rute Kapal untuk Distribusi Spare Parts Menggunakan Vehicle Routing Problem dengan Algoritma Tabu Search,” Go-Integratif : Jurnal Teknik Sistem dan Industri, vol. 1, no. 01, pp. 1–10, Nov. 2020, doi: 10.35261/gijtsi.v1i01.4316.

A. Khadijah, A. Syarifudin, and H. Wijaya, “Determination of Distribution Products Using Matrix Saving Method in the Serang Marketing Office Area,” in Proceedings of the 1st International Multidisciplinary Conference on Education, Technology, and Engineering (IMCETE 2019), Paris, France: Atlantis Press, 2020. doi: 10.2991/assehr.k.200303.079.

S. Liu, H. Wang, W. Peng, and W. Yao, “Surrogate-assisted evolutionary algorithms for expensive combinatorial optimization: a survey,” Complex and Intelligent Systems, vol. 10, no. 4, pp. 5933–5949, Aug. 2024, doi: 10.1007/s40747-024-01465-5.

A. Pătrăușanu, A. Florea, M. Neghină, A. Dicoiu, and R. Chiș, “A Systematic Review of Multi-Objective Evolutionary Algorithms Optimization Frameworks,” Processes, vol. 12, no. 5, p. 869, Apr. 2024, doi: 10.3390/pr12050869.

Published

2024-11-30

How to Cite

[1]
R. S. Utami, R. Arifin, R. D. Lufika, R. Dio, and H. V. S. Manihuruk, “Penerapan Algoritma Evolutionary dan Nearest Neighbor untuk Optimasi Rute Distribusi”, GIJTSI, vol. 5, no. 02, pp. 84–93, Nov. 2024.