Modelling of Freezer Temperature Prediction using Machine Learning Approach with TensorFlow Framework
DOI:
https://doi.org/10.35261/gijtsi.v5i02.12524Abstract
Temperature control in freezers is crucial to maintaining product quality and safety, particularly in the food and pharmaceutical industries. Uncontrolled temperature fluctuations can lead to product damage, increased waste, and reduced quality. Machine learning technology offers an effective solution for predicting and controlling temperature, enabling more accurate monitoring and rapid responses to changing conditions. This study aims to develop a machine learning model using the TensorFlow framework to predict freezer temperatures. Temperature data were collected from sensors installed inside the freezer and used to train and test several machine learning architectures, including Long Short-Term Memory (LSTM) and 1D Convolutional (Conv1D) networks. Model development leveraged TensorFlow's advanced features, enabling efficient model creation, training, and testing. The results show that the Conv1D model with a data composition of 90% training, 5% validation, and 5% testing achieved the best predictions, with a test RMSE of 0.02085°C and a test MAPE of 0.33522%. This predictive model has the potential to be used as an early warning system to prevent product damage. This research is expected to significantly contribute to the development of more efficient temperature monitoring and control systems in freezers, with potential applications across industries such as food and pharmaceuticals. The findings also reinforce the substantial potential of machine learning in environmental prediction and monitoring.
Downloads
References
Y. Hu dan B. Shen, “Experimental insights into thermoelectric freezer systems: Feasibility and efficiency,” Energy Convers. Manag. X, vol. 23, no. June, 2024, doi: 10.1016/j.ecmx.2024.100676.
P. Yang dkk., “Performance improvement of a household freezer with a microchannel flat-tube evaporator,” Case Stud. Therm. Eng., vol. 49, no. August, 2023, doi: 10.1016/j.csite.2023.103394.
J. Liu dan Y. Liu, “Experimental investigation of a bypass two-circuit cycle refrigerator-freezer with low GWP zeotropic refrigerants,” Case Stud. Therm. Eng., vol. 54, no. January, 2024, doi: 10.1016/j.csite.2024.104071.
O. Surucu, S. A. Gadsden, dan J. Yawney, “Condition Monitoring using Machine Learning: A Review of Theory, Applications, and Recent Advances,” Expert Syst. Appl., vol. 221, no. October 2021, 2023, doi: 10.1016/j.eswa.2023.119738.
S. Russel dan P. Norvig, Artifical Intelligence: A Modern Approach, 4 th. Cambridge: e press synd icate o f the un ivers ity o f cambr idge, 2021.
M. A. Alrowaily, O. Alruwaili, M. Alghamdi, M. Alshammeri, M. Alahmari, dan G. Abbas, “Application of extreme machine learning for smart agricultural robots to reduce manoeuvering adaptability errors,” Alexandria Eng. J., vol. 109, no. May, hal. 655–668, 2024, doi: 10.1016/j.aej.2024.09.062.
M. Dorraki dkk., “Improving Cardiovascular Disease Prediction With Machine Learning Using Mental Health Data: A Prospective UK Biobank Study,” JACC Adv., vol. 3, no. 9, 2024, doi: 10.1016/j.jacadv.2024.101180.
R. Novella, B. Pla, P. Bares, dan A. Aramburu, “Identification of Adequate Combustion in Turbulent Jet Ignition Engines using Machine Learning Algorithms,” hal. 102–107, 2021, doi: https://doi.org/10.1016/j.ifacol.2021.10.148.
R. Akbar, R. Santoso, dan B. Warsito, “Prediksi Tingkat Temperatur Kota Semarang Menggunakan Metode Long Short-Term Memory (Lstm),” J. Gaussian, vol. 11, no. 4, hal. 572–579, 2023, doi: 10.14710/j.gauss.11.4.572-579.
H. Yang, S. Yoon, H. T. Lee, K. S. Kim, H. J. Han, dan Y. J. Park, “Abnormal high water temperature prediction in nearshore waters around the Korean Peninsula using ECMWF ERA5 data and a deep learning model,” J. Sea Res., vol. 202, no. September, 2024, doi: 10.1016/j.seares.2024.102546.
Y. B. Kebede, M. Der Yang, dan C. W. Huang, “Real-time pavement temperature prediction through ensemble machine learning,” Eng. Appl. Artif. Intell., vol. 135, no. November 2023, 2024, doi: 10.1016/j.engappai.2024.108870.
X. Gu, W. Lei, J. Xi, dan M. Song, “Structural optimization and battery temperature prediction of battery thermal management system based on machine learning,” Case Stud. Therm. Eng., vol. 62, no. September, 2024, doi: 10.1016/j.csite.2024.105207.
A. Augusto dkk., “A novel seaweed-based biodegradable and active food film to reduce freezer burn in frozen salmon,” Food Hydrocoll., vol. 156, no. June, 2024, doi: 10.1016/j.foodhyd.2024.110332.
H. Jouhara dkk., “Low-temperature heat transfer mediums for cryogenic applications mid InfraRed Instrument,” J. Taiwan Inst. Chem. Eng., vol. 148, no. January, hal. 104709, 2023, [Daring]. Tersedia pada: https://doi.org/10.1016/j.jtice.2023.104709
Q. Xu, B. Deng, Y. Wang, W. Liu, dan G. Chen, “Small, affordable, ultra-low-temperature vapor-compression and thermoelectric hybrid freezer for clinical applications,” Cell Reports Phys. Sci., vol. 4, no. 12, 2023, doi: 10.1016/j.xcrp.2023.101735.
D. Eriksson dkk., “Survival of Campylobacter jejuni in frozen chicken meat and risks associated with handling contaminated chicken in the kitchen,” Food Control, vol. 145, no. June 2022, 2023, doi: 10.1016/j.foodcont.2022.109471.
J. Ullah, P. S. Takhar, dan S. S. Sablani, “Effect of temperature fluctuations on ice-crystal growth in frozen potatoes during storage,” Lwt, vol. 59, no. 2P1, hal. 1186–1190, 2014, doi: 10.1016/j.lwt.2014.06.018.
S. S. Sorour, C. A. Saleh, dan M. Shazly, “A review on machine learning implementation for predicting and optimizing the mechanical behaviour of laminated fiber-reinforced polymer composites,” Heliyon, vol. 10, no. 13, 2024, doi: 10.1016/j.heliyon.2024.e33681.
Y. G. Lv, Y. T. Wang, T. Meng, Q. W. Wang, dan W. X. Chu, “Review on thermal management technologies for electronics in spacecraft environment,” Energy Storage Sav., vol. 3, no. 3, hal. 153–189, 2024, doi: 10.1016/j.enss.2024.03.001.
L. Wiranda dan M. Sadikin, “Penerapan Long Short Term Memory pada Data Time Series untuk Memprediksi Penjualan Produk PT. Metiska Farma,” J. Nas. Pendidik. Tek. Inform., vol. 8, no. 3, hal. 184–196, 2019.
F. Le Peng, Y. K. Qiao, dan C. Yang, “A LSTM-RNN based intelligent control approach for temperature and humidity environment of urban utility tunnels,” Heliyon, vol. 9, no. 2, 2023, doi: 10.1016/j.heliyon.2023.e13182.
I. Elafi, N. Zrira, A. Kamal-Idrissi, H. A. Khan, dan A. Ettouhami, “STA-SST: Spatio-temporal time series prediction of Moroccan Sea surface temperature,” J. Sea Res., vol. 200, no. May, 2024, doi: 10.1016/j.seares.2024.102515.
M. H. Zafar, S. M. S. Bukhari, M. A. Houran, M. Mansoor, N. M. Khan, dan F. Sanfilippo, “DeepTimeNet: A novel architecture for precise surface temperature estimation of lithium-ion batteries across diverse ambient conditions,” Case Stud. Therm. Eng., vol. 61, no. February, 2024, doi: 10.1016/j.csite.2024.105002.
M. W. Liemohn, A. D. Shane, A. R. Azari, A. K. Petersen, B. M. Swiger, dan A. Mukhopadhyay, “RMSE is not enough: Guidelines to robust data-model comparisons for magnetospheric physics,” J. Atmos. Solar-Terrestrial Phys., vol. 218, no. March, 2021, doi: 10.1016/j.jastp.2021.105624.
Z. Mustaffa dan M. H. Sulaiman, “Battery remaining useful life estimation based on particle swarm optimization-neural network,” Clean. Energy Syst., vol. 9, no. May, 2024, doi: 10.1016/j.cles.2024.100151.
A. Hightower, A. Ziedan, J. Guo, X. Zhu, dan C. Brakewood, “A comparison of time series methods for post-COVID transit ridership forecasting,” J. Public Transp., vol. 26, no. May, 2024, doi: 10.1016/j.jpubtr.2024.100097.
T. Zhang, Y. Pan, L. Huang, dan X. Zhong, “An empirical study of combinational load forecasting in a city power company of China,” Energy Reports, vol. 11, no. December 2023, hal. 637–650, 2024, doi: 10.1016/j.egyr.2023.12.015.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ahmad Davi, Farkhan Jatmiko Sidiq, Muhammad Aziz Arrizal, Fahrizal Agil Wibowo, Taopik Sendy Gunawan, Andini Nur Aisyah, Alif Nur Hidayat

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
