Demand Forecasting of Slippers Product for an SMEs in Mulyaharja Bogor City

Authors

  • Suhendi Irawan Department of Industrial Management, IPB University
  • Antonya Rumondang Sinaga Department of Industrial Management, IPB University
  • Annisa Kartinawati Department of Industrial Management, IPB University
  • Agung Prayudha Hidayat Department of Industrial Management, IPB University
  • Derry Dardanella Department of Industrial Management, IPB University
  • Sesar Husen Santosa Department of Industrial Management, IPB University
  • Purana Indrawan Department of Industrial Management, IPB University
  • Fany Apriliani Department of Industrial Management, IPB University
  • Doni Yusri Department of Industrial Management, IPB University
  • Hendri Wijaya Department of Industrial Management, IPB University
  • Fattah Jati Pangestu Department of Industrial Management, IPB University
  • Novia Rahmawati Department of Industrial Management, IPB University

DOI:

https://doi.org/10.35261/gijtsi.v5i02.12534

Abstract

MSMEs are one of the important sectors to support economic growth. In the midst of increasingly tight competition, business actors need to implement effective strategies to anticipate fluctuations in market demand so that accurate demand forecasting is a crucial step to ensure optimal stock availability. Currently, MSMEs only make predictions based on instinct and experience, not based on mathematical calculations, so that sometimes there is overstock or understock of the goods produced. This study analyzes the demand for sandals and shoes at MSME Mulyaharja, Bogor City using the moving average and exponential smoothing methods. The purpose of this study is to determine the most accurate forecasting method to optimize inventory management and minimize the risk of shortages or excess stock. Historical sales data for one year is used as the basis for the analysis. The results of the comparative analysis of forecasting errors show that the Moving average method with 2 periods provides the most accurate results, with a Mean Absolute Deviation (MAD) value of 54, Mean Squared Error (MSE) of 3380, and Mean Absolute Percentage Error (MAPE) of 18%. The conclusion of this study is that the 2-period Moving average method is the best method to be applied to Mulyaharja UMKM, by applying this forecasting method, overstock and understock of product inventory can be reduced because the amount of production produced is close to the amount of customer demand.

Downloads

Download data is not yet available.

References

E. A. Rahman, W. Wahyudin, and M. R. Rifa’i, “Pengendalian Pengadaan Bahan Baku Sambal Seafood Menggunakan Metode Economic Order Quantity,” Go-Integratif J. Tek. Sist. dan Ind., vol. 3, no. 02, pp. 110–124, 2022, doi: 10.35261/gijtsi.v3i02.7267.

S. Irawan, H. Wijaya, A. Kartinawati, and S. T Risyahadi, “Production Planning to Meet Maximum Demand with Forecasting and Aggregation Methods,” E3S Web Conf., vol. 454, pp. 1–8, 2023, doi: 10.1051/e3sconf/202345403018.

D. M. Sihombing and W. Setiafindari, “Peramalan Produksi Crude Palm Oil Dengan Algoritma,” pp. 27–31, 2023.

M. K. Mollah and A. D. Saputra, “Penerapan Peramalan Penjualan Menggunakan Aplikasi POM QM pada produk Gula di PT. Pabrik Gula Candi Baru Sidoarjo,” Semin. Nas. Teknol. Ind. Berkelanjutan II (SENASTITAN II), pp. 449–458, 2022.

R. Rachman, “Penerapan Metode Moving average Dan Exponential Smoothing Pada Peramalan Produksi Industri Garment,” J. Inform., vol. 5, no. 2, pp. 211–220, 2018, doi: 10.31311/ji.v5i2.3309.

M. Mukhlis, A. Kustiyo, and A. Suharso, “Peramalan Produksi Pertanian Menggunakan Model Long Short-Term Memory,” Bina Insa. Ict J., vol. 8, no. 1, p. 22, 2021, doi: 10.51211/biict.v8i1.1492.

A. A. Anugrah Ilahi, “Pelatihan POM-QM for Windows Dalam Penyelesaian Permasalahan Transportasi Bagi Mahasiswa,” Amsir Community Serv. J., vol. 1, no. 1, pp. 13–20, 2023, doi: 10.62861/acsj.v1i1.182.

M. Febrina, F. Arina, and Ratna Ekawati, “Peramalan Jumlah Permintaan Produksi Menggunakan Jaringan Saraf Tiruan Algoritma Backpropagation,” J. Inf. dan Teknol., vol. 1, no. 2, pp. 27–32, 2022, doi: 10.37034/jidt.v4i1.178.

R. Yogautami, C. D. R, G. A. A, and G. E. M, “Analisis Peramalan (Frecasting) Produksi Jagung Di Provinsi Lampung Dengan Aplikasi Pom Qm,” J. Ekon. Pertan. dan Agribisnis, vol. 7, no. 4, pp. 1299–1308, 2023.

I. Amallynda and E. Wicaksono, “Strategi Peramalan dan Pengendalian Persediaan Suku Cadang di Industri Pengolahan dan Importir Kayu Lapis,” vol. 05, no. 01, pp. 67–83, 2024.

F. N. Aqilla, “Kajian UMKM dalam Rangka Pemulihan Ekonomi Daerah Kabupaten Bogor Tahun 2021,” J. Bina Pembang. Drh., vol. 1, no. 1, pp. 101–125, 2022.

B. P. Agil Saputro, “Peramalan Perencanaan Produksi Semen dengan Metode Exponential Smoothing pada PT. Semen Indonesia,” Ind. Eng. Online J., vol. 5, no. 4, pp. 1–7, 2016.

Y. A. Jatmiko, R. L. Rahayu, and G. Darmawan, “Perbandingan Keakuratan Hasil Peramalan Produksi Bawang Merah Metode Holt-Winters Dengan Singular Spectrum Analysis (Ssa),” J. Mat. “MANTIK,” vol. 3, no. 1, p. 13, 2017, doi: 10.15642/mantik.2017.3.1.13-24.

Published

2024-11-30

How to Cite

[1]
S. Irawan, “Demand Forecasting of Slippers Product for an SMEs in Mulyaharja Bogor City”, GIJTSI, vol. 5, no. 02, pp. 120–131, Nov. 2024.