ANALISIS KARAKTERISTIK METIL ESTER (BIODIESEL) MINYAK KEMIRI SEBAGAI ALTERNATIF BIOADITIF PENURUN TITIK TUANG BIODIESEL CPO

Penulis

  • Misdawati Misdawati Program Studi Teknik Mesin, Fakultas Teknik, Universitas Alwashliyah Medan
  • Siswadi Siswadi Universitas Singaperbangsa Karawang
  • Sari Farah Dina Farah Dina Prodi D-III Teknik Mesin, Politeknik Teknologi Kimia Industri, PTKI Medan

DOI:

https://doi.org/10.35261/barometer.v9i1.10945

Abstrak

Kelemahan biodiesel CPO adalah titik tuangnya (pour point) yang tinggi sehingga pada suhu rendah akan menyebabkan masalah dalam pemanfaatannya pada mesin pengguna. Akan mengakibatkan terjadinya penyumbatan pada filter dan saluran bahan bakar  Penelitian ini bertujuan untuk menurunkan titik tuang biodiesel CPO dengan cara mencampurkannya dengan metil ester (biodiesel)  minyak kemiri. Dalam penelitian ini pengaruh komposisi, jenis biodiesel yang dicampurkan dievaluasi untuk mencari kombinasi yang paling baik dari ratio biodiesel dalam campuran . Pengaruh asam linolenat yang ada pada minyak kemiri terhadap kualitas biodiesel yang dihasilkan juga dievaluasi. Hasil penelitian menunjukkan bahwa semakin banyak proporsi penambahan biodiesel minyak kemiri, maka titik tuang biodiesel campuran menjadi semakin rendah. Biodiesel bertitik tuang rendah diperoleh 10oC dari pencampuran biodiesel CPO dengan biodiesel kemiri pada komposisi 80 : 20 dan titik tuang optimal diperoleh -5oC. Ternyata ikatan rangkap dua yang ada pada asam lemak linolenat sangat mempengaruhi kualitas biodiesel yang dihasilkan dari pada panjang rantai karbon asam lemak.

Unduhan

Data unduhan belum tersedia.

Referensi

H. Widodo, E. Kustiyah, Y. Trihusodo, and A. Annisa, “Studi Penentuan Umur Simpan Minyak Sawit Dengan Metode Accelerated Shelf Lifetesting,” Barometer, vol. 4, no. 2, pp. 192–196, 2019.

J. C. Ge, H. Y. Kim, S. K. Yoon, and N. J. Choi, “Optimization of palm oil biodiesel blends and engine operating parameters to improve performance and PM morphology in a common rail direct injection diesel engine,” Fuel, vol. 260, p. 116326, 2020.

R. Wulan, R. I. Astuti, Y. Rukayadi, S. Estuningsih, and A. Meryandini, “Seleksi, Karakterisasi Morfologi, dan Identifikasi Aktinobakteri Penghasil Mananase Asal Hutan Tanah Jambi untuk Produksi Mananoligosakarida,” J. Ilmu Pertan. Indones., vol. 27, no. 2, pp. 279–286, 2022.

L. Laila, “Kaji eksperimen angka asam dan viskositas biodiesel berbahan baku minyak kelapa sawit dari PT Smart Tbk,” J. Teknol. Proses dan Inov. Ind., vol. 2, no. 1, 2017.

D. Widyaningtyas and T. Widodo, “Analisis pangsa pasar dan daya saing CPO Indonesia di Uni Eropa,” J. Manaj. Dayasaing, vol. 18, no. 2, pp. 138–145, 2017.

A. Iskandar, “Dampak Perubahan Harga Crude Palm Oil (CPO) Dunia Terhadap Value Ekspor Komoditas Kelapa Sawit dan Perekonomian Indonesia (Pendekatan Vector Autoregression Analysis)(The Impact of Exchange of Crude Palm Oil (CPO) Price on Export Value of Palm Oil Commodity and Economy of Indonesia (Vector Autoregression Analysis Approach),” J. Info Artha Sekol. Tinggi Akunt. Negara Vol. I/XIII/2015-ISSN, pp. 852–6737, 2015.

B. L. Salvi, “Transesterification methods,” in Production of Biodiesel from Non-Edible Sources, Elsevier, 2022, pp. 117–151.

Zulqarnain et al., “A comprehensive review on oil extraction and biodiesel production technologies,” Sustainability, vol. 13, no. 2, p. 788, 2021.

V. K. Mishra and R. Goswami, “A review of production, properties and advantages of biodiesel,” Biofuels, vol. 9, no. 2, pp. 273–289, 2018.

S. Budžaki, G. Miljić, S. Sundaram, M. Tišma, and V. Hessel, “Cost analysis of enzymatic biodiesel production in small-scaled packed-bed reactors,” Appl. Energy, vol. 210, pp. 268–278, 2018.

F. L. C. Almeida, B. M. Travalia, I. S. Goncalves, and M. B. S. Forte, “Biodiesel production by lipase‐catalyzed reactions: bibliometric analysis and study of trends,” Biofuels, Bioprod. Biorefining, vol. 15, no. 4, pp. 1141–1159, 2021.

Z. I. Ishak, N. A. Sairi, Y. Alias, M. K. T. Aroua, and R. Yusoff, “A review of ionic liquids as catalysts for transesterification reactions of biodiesel and glycerol carbonate production,” Catal. Rev., vol. 59, no. 1, pp. 44–93, 2017.

K. A. Zahan and M. Kano, “Biodiesel production from palm oil, its by-products, and mill effluent: A review,” Energies, vol. 11, no. 8, p. 2132, 2018.

N. Kumar, “Oxidative stability of biodiesel: Causes, effects and prevention,” Fuel, vol. 190, pp. 328–350, 2017.

F. Sundus, M. A. Fazal, and H. H. Masjuki, “Tribology with biodiesel: A study on enhancing biodiesel stability and its fuel properties,” Renew. Sustain. Energy Rev., vol. 70, pp. 399–412, 2017.

M. N. Bin Mohiddin et al., “Evaluation on feedstock, technologies, catalyst and reactor for sustainable biodiesel production: A review,” J. Ind. Eng. Chem., vol. 98, pp. 60–81, 2021.

T. M. I. Mahlia et al., “Patent landscape review on biodiesel production: Technology updates,” Renew. Sustain. Energy Rev., vol. 118, p. 109526, 2020.

M. Das, M. Sarkar, A. Datta, and A. K. Santra, “An experimental study on the combustion, performance and emission characteristics of a diesel engine fuelled with diesel-castor oil biodiesel blends,” Renew. Energy, vol. 119, pp. 174–184, 2018.

J. A. Dyer, X. P. C. Vergé, R. L. Desjardins, D. E. Worth, and B. G. McConkey, “The impact of increased biodiesel production on the greenhouse gas emissions from field crops in Canada,” Energy Sustain. Dev., vol. 14, no. 2, pp. 73–82, 2010, doi: 10.1016/j.esd.2010.03.001.

H. Hadiyanto, A. P. Aini, W. Widayat, K. Kusmiyati, A. Budiman, and A. Rosyadi, “Multi-Feedstock Biodiesel Production from Esterification of Calophyllum inophyllum Oil, Castor Oil, Palm Oil, and Waste Cooking Oil.,” Int. J. Renew. Energy Dev., vol. 9, no. 1, 2020.

S. Yusup and M. Khan, “Basic properties of crude rubber seed oil and crude palm oil blend as a potential feedstock for biodiesel production with enhanced cold flow characteristics,” Biomass and Bioenergy, vol. 34, no. 10, pp. 1523–1526, 2010.

M. Misdawati, Minyak Biji Karet Sebagai Aditif Biodiesel CPO. Serang Banten: CV. AA. RIZKY, 2023.

A. Alexandre, A. M. A. Dias, I. J. Seabra, A. Portugal, H. C. De Sousa, and M. E. M. Braga, “Biodiesel obtained from supercritical carbon dioxide oil of Cynara cardunculus L.,” J. Supercrit. Fluids, vol. 68, pp. 52–63, 2012.

G. Knothe, “Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters,” Fuel Process. Technol., vol. 86, no. 10, pp. 1059–1070, 2005.

H. HATTA and A. LABOKO, SIFAT FISIKOKIMIA PASTA COKELAT:(Dengan Penambahan Lemak Kakao Dan Minyak Sawit). CV CAHAYA ARSH PUBLISHER & PRINTING, 2021.

M. M. Azam, A. Waris, and N. M. Nahar, “Prospects and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India,” Biomass and bioenergy, vol. 29, no. 4, pp. 293–302, 2005.

G. Knothe, “Some aspects of biodiesel oxidative stability,” Fuel Process. Technol., vol. 88, no. 7, pp. 669–677, 2007.

R. A. B. Hariyanto, R. A. Firmansyah, R. Y. P. Burhan, and Y. Zetra, “Synthesis of bio-additive for low sulphur diesel: Transesterification of soybean oil and ethylene glycol using K2CO3 catalyst,” Automot. Exp., vol. 4, no. 1, pp. 44–50, 2021.

A. Demirbas, Biodiesel. Springer, 2008.

A. B. Ferreira, A. Lemos Cardoso, and M. J. da Silva, “Tin-catalyzed esterification and transesterification reactions: a review,” Int. Sch. Res. Not., vol. 2012, 2012.

A. S. Ramadhas, C. Muraleedharan, and S. Jayaraj, “Performance and emission evaluation of a diesel engine fueled with methyl esters of rubber seed oil,” Renew. energy, vol. 30, no. 12, pp. 1789–1800, 2005.

M. R. Monteiro et al., “Evaluation of biodiesel–diesel blends quality using 1H NMR and chemometrics,” Talanta, vol. 78, no. 3, pp. 660–664, 2009.

##submission.downloads##

Diterbitkan

2024-01-31

Cara Mengutip

Misdawati, M., Siswadi, S., & Farah Dina, S. F. D. (2024). ANALISIS KARAKTERISTIK METIL ESTER (BIODIESEL) MINYAK KEMIRI SEBAGAI ALTERNATIF BIOADITIF PENURUN TITIK TUANG BIODIESEL CPO. BAROMETER, 9(1), 48–55. https://doi.org/10.35261/barometer.v9i1.10945

Terbitan

Bagian

Artikel